Project

Back to overview

Precision molecular spectroscopy using a network for distribution of the Swiss primary frequency standard

Applicant Willitsch Stefan
Number 183579
Funding scheme Sinergia
Research institution Physikalische Chemie Departement Chemie Universität Basel
Institution of higher education University of Basel - BS
Main discipline Interdisciplinary
Start/End 01.01.2019 - 31.12.2022
Approved amount 2'133'050.00
Show all

All Disciplines (4)

Discipline
Interdisciplinary
Other disciplines of Physics
Microelectronics. Optoelectronics
Physical Chemistry

Keywords (7)

frequency standards; frequency metrology; molecular clocks; quantum-cascade lasers; frequency distribution; molecular spectroscopy; precision spectroscopy

Lay Summary (German)

Lead
Das Ziel dieses Projekt ist die extreme genaue Vermessung von Energieintervallen in Molekülen, insbesondere geladenen Teilchen (sogenannten molekularen Ionen), basierend auf neuesten Fortschritten in der Lasertechnologie, Frequenzmetrologie und Moleküloptik. Es wird eine Messgenauigkeit im Bereich von bis zu einem Teil in einer Billiarde (10^(-15)) angestrebt, eine Verbesserung von mehreren Grössenordnungen im Vergleich zum bisherigen Rekord von einem Teil in einer Milliarde (10^(-9)). Diese Fortschritte werden neue Horizonte für die Molekülspektroskopie eröffnen, z.B. in der Anwendung von Molekülen als Basis für ultragenaue Uhren oder für die Untersuchung von fundamentalen physikalischen Problemen. Dazu gehören z.B. das derzeitige Rätsel um die Grösse des Protons, eine mögliche zeitliche Veränderung von fundamentalen Naturkonstanten und hochgenaue Tests der Theorie der Quantenelektrodynamik.
Lay summary

Das vorliegende Projekt zielt auf eine dramatische Verbesserung der Genauigkeit von spektroskopischen  Messungen ab. Diese soll durch die Implementierung von neuartigen Messmethoden basierend auf Quantentechnologien, durch die Entwicklung neuer schmalbandiger Laserlichtquellen und insbesondere durch die Einrichtung eines nationalen Glasfaser-Netzwerks für die Verteilung des primären Schweizer Frequenzstandards vom Schweizer Metrologieinstitut METAS in Bern zu den beteiligten Spektroskopielabors in Basel und Zürich erreicht werden. Dieses Netzwerk wird die absolute Stabiliserung von Laserlichtquellen mit einer Genauigkeit von 10-15 durch den Vergleich mit dem Schweizer Primärstandard erlauben. Während eine Reihe von europäischen Ländern bereits nationale und internationale Netzwerke zur präzisen Verteilung von optischen Frequenzen entwickelt haben, gibt es noch kein derartiges Netzwerk in der Schweiz. Das vorliegende Projekt wird diese Lücke schliessen und die Wettbewerbsfähigkeit der Schweiz in diesem sich rasch entwickelnden wissenschaftlichen und technologischen Bereich gewährleisten. Der hier entwickelte Prototyp des Netzwerks soll in weiterer Folge den Kern eines grösseren nationalen Metrologie-Netzwerks bilden, mit dem sich alle Schweizer Forschungslabors und -gruppen auf dem Gebiet der Frequenzmetrologie vernetzen können.

Das vorliegende Projekt ist höchst interdisziplinär und wird durch die enge Zusammenarbeit eines interdisziplinären Teams von Physikochemikern, Laserphysikern, Metrologen und Telekomnetzwerk-Ingenieuren realisiert.

Direct link to Lay Summary Last update: 27.11.2018

Lay Summary (English)

Lead
The goal of this project is to exploit recent progress in laser technology, frequency metrology and molecule optics to carry out ultra-precise spectroscopic measurements of energy intervals in molecules, in particular charged species (molecular ions). We aim to achieve a relative measurement accuracy in molecular-ion spectroscopy of order 10^(-14) - 10^(-15), an improvement of several orders of magnitude in comparison to the present state of the art of 10^(-9). These advancements will open up a new frontier in precision molecular spectroscopy which will pave the way for using molecules as new types of clocks, for addressing fundamental physical problems. These include the puzzle about the size of the proton, a possible temporal variation of fundamental physical constants and precision tests of quantum electrodynamics.
Lay summary

The present project aims at a dramatic advancement in spectroscopic measurement accuracy enabled by the implementation of new spectroscopic methodologies based on upcoming quantum technologies, by the development of ultranarrow quantum-cascade laser sources, and in particular through the implementation of a fibre-optical network for the distribution of the Swiss primary frequency standard maintained by the Federal Institute of Metrology METAS in Berne to spectroscopy laboratories in Basel and Zurich. This network will enable the absolute stabilisation of the laser sources employed in the present measurements at a level of up to 10−15 by their referencing to the Swiss primary standard. While several European countries have already set up similar national and international networks for precision frequency distribution, Switzerland thus far possesses no such facilities. The present project will close this gap and now establish a prototype Swiss network connecting ETH Zurich, the University of Basel and the Federal Institute of Metrology METAS in Bern/Wabern. This prototype is intended to form the nucleus of a wider national network for precision frequency- and time distribution linking a broad range of national laboratories and research groups involved in precision frequency measurements in the future. 

The objectives of this highly interdisciplinary project will be reached through the close collaboration of a highly interdisciplinary team involving physical chemists, laser physicists, metrologists and telecommunication-network engineers. 

 
Direct link to Lay Summary Last update: 27.11.2018

Responsible applicant and co-applicants

Employees

Project partner

Natural persons


Name Institute

Publications

Publication
Identification of molecular quantum states using phase-sensitive forces
Najafian Kaveh, Meir Ziv, Sinhal Mudit, Willitsch Stefan (2020), Identification of molecular quantum states using phase-sensitive forces, in Nature Communications, 11(1), 4470-4470.
From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N 2+
Najafian Kaveh, Meir Ziv, Willitsch Stefan (2020), From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N 2+, in Physical Chemistry Chemical Physics, 22(40), 23083-23098.
Quantum-nondemolition state detection and spectroscopy of single trapped molecules
Sinhal Mudit, Meir Ziv, Najafian Kaveh, Hegi Gregor, Willitsch Stefan (2020), Quantum-nondemolition state detection and spectroscopy of single trapped molecules, in Science, 367(6483), 1213-1218.
Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the 2P3/2 state in Ca+40
Meir Ziv, Sinhal Mudit, Safronova Marianna S., Willitsch Stefan (2020), Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the 2P3/2 state in Ca+40, in Physical Review A, 101(1), 012509-012509.
State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions
Meir Ziv, Hegi Gregor, Najafian Kaveh, Sinhal Mudit, Willitsch Stefan (2019), State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions, in Faraday Discussions, 217, 561-583.

Datasets

Raw Data for "Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: the lifetime of the 2P3/2 state in 40Ca+"

Author Meir, Ziv; Sinhal, Mudit; Safronova, Mariana; Willitsch, Stefan
Persistent Identifier (PID) 10.5281/zenodo.3532723
Repository Zenodo


Raw Data for "Quantum non-demolition state detection and spectroscopy of single trapped molecules"

Author Sinhal, Mudit; Meir, Ziv; Najafian, Kaveh; Hegi, Gregor; Willitsch, Stefan
Persistent Identifier (PID) 10.5281/zenodo.3532943
Repository Zenodo


Primary data for "Identification of molecular quantum states using phase-sensitive forces"

Author Najafian, Kaveh; Meir, Ziv; Sinhal, Mudit; Willitsch, Stefan
Persistent Identifier (PID) 10.5281/zenodo.3898047
Repository Zenodo


Codes for "From megahertz to terahertz qubits encoded in molecular ions: theoretical analysis of dipole-forbidden spectroscopic transitions in N2+"

Author Najafian, Kaveh; Meir, Ziv; Willitsch, Stefan
Persistent Identifier (PID) 10.5281/zenodo.4006578
Repository Zenodo


Collaboration

Group / person Country
Types of collaboration
Istituto nazionale di ricerca metrologica (INRIM) Italy (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Online invited physics seminar talk Individual talk Quantum-logic precision spectroscopy and control of trapped molecules 16.12.2020 Hebrew University, Jerusalem, Israel Meir Ziv;
Online Seminar Talk Individual talk Quantum-Non-Demolition State Detection of Single Molecules for Precise Molecular Spectroscopy 03.12.2020 Centre for Atomic, Molecular and Optical Physics, University of Warsaw, Poland Willitsch Stefan;
Online invited solid-state seminar talk Individual talk Quantum-logic precision spectroscopy and control of trapped molecules 30.11.2020 Technion, Haifa, Israel Meir Ziv;
1st International LOEWE-Scalable Molecular Quantum Bits (SMolBits) Workshop Talk given at a conference Quantum technologies with trapped molecular ions 12.11.2020 online, Germany Willitsch Stefan;
SWITCH ICT Focus Talk given at a conference Precise time and frequency transfer using the SWITCH network 10.11.2020 online, Switzerland Willitsch Stefan; Morel Jacques;
Online invited condensed matter seminar talk Individual talk Quantum-logic precision spectroscopy and control of trapped molecules 14.10.2020 Tel Aviv University, Tel Aviv, Israel Meir Ziv;
Online invited AMO Seminar talk Individual talk Quantum-logic state detection and preparation of rovibrational molecular states 01.10.2020 Weizmann Institute of Science, Rehovot, Israel Meir Ziv;
51st Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics Talk given at a conference Quantum-Non-Demolition State Detection of Single Molecules for Precise Molecular Spectroscopy 01.06.2020 online, United States of America Willitsch Stefan;
QSIT seminar talk Individual talk Quantum non-demolition state detection of homonuclear molecules 26.11.2019 ETH Zurich, Switzerland Meir Ziv;
Seminar Talk Individual talk Non-demolition detection of the quantum state of a single trapped molecular ion 29.09.2019 Wuhan Institute of Physics and Mathematics, China Willitsch Stefan;
QION 2019 Workshop Talk given at a conference Quantum non-demolition detection of molecular rotational states 03.09.2019 Tel Aviv, Israel Meir Ziv;
Swiss and Austrian physical society meeting (SPS/OPG) Talk given at a conference Progress in the quantum control of single molecules 30.08.2019 University of Zurich, Switzerland Meir Ziv;
Gordon Research Conference 
Quantum Control of Light and Matter Talk given at a conference New Quantum Methods for the Manipulation, Spectroscopy and State-to-State Chemistry of Single Molecular Ions 11.08.2019 Newport, United States of America Willitsch Stefan;
Seminar Talk Individual talk Progress in the quantum control of single molecular ions 29.07.2019 Yale University, United States of America Meir Ziv;
2. North American Conference on Trapped Ions Talk given at a conference Progress in the quantum control of single molecular ions 22.07.2019 University of Maryland in College Park, MD, United States of America Meir Ziv;
Faraday Discussion "Advances in Ion Spectroscopy" Talk given at a conference State-selective coherent motional excitation as a new approach for the manipulation, spectroscopy and state-to-state chemistry of single molecular ions 08.04.2019 York, Great Britain and Northern Ireland Willitsch Stefan;
Gordon Research Conference on Gaseous Ions Talk given at a conference New Quantum Methods for Studies of the Spectroscopy and Dynamics of Single Molecular Ions 17.02.2019 Ventura, United States of America Willitsch Stefan;
Seminar Talk Individual talk Quantum methods for the precision spectroscopy of single molecules 10.01.2019 Laboratoire Temps-Fréquence Université de Neuchâtel, Switzerland Willitsch Stefan;


Awards

Title Year
Erwin Schrödinger-Goldmedaille, SASP Award 2020, SASP and University of Innsbruck 2020

Associated projects

Number Title Start Funding scheme
178942 Monolithic, self referenced quantum cascade laser frequency comb in the mid-infrared 01.04.2018 Project funding (Div. I-III)
200478 Precision measurements with cold molecules: Rydberg states, ions and photoionization 01.04.2021 Project funding (Div. I-III)

Abstract

The goal of this project is to exploit recent progress in laser technology, frequency metrology and molecule optics to carry out ultra-precise measurements of energy intervals between electronic, vibrational and rotational states of molecules, in particular molecular ions. The present project aims to achieve a relative measurement accuracy in molecular-ion spectroscopy of order 10^(-14) - 10^(-15), an improvement of several orders of magnitude in comparison to the present state of the art of 10^(-9). These advancements will open up a new frontier in precision molecular spectroscopy which will pave the way for using molecules as new high-precision frequency standards and clocks, for addressing fundamental physical problems such as the proton-radius puzzle and a possible temporal variation of fundamental physical constants and for precision tests of quantum electrodynamics. All of these application will be explored in the present project.The dramatic advancement in measurement accuracy targeted in the present project will be enabled by the implementation of new spectroscopic methodologies based on quantum technologies, by the development of ultranarrow quantum-cascade laser sources tailored to the present needs, and in particular through the implementation of a fibre-optical network for the distribution of the Swiss primary frequency standard maintained by the Federal Institute of Metrology METAS to spectroscopy laboratories in Basel and Zurich. This network will enable the absolute stabilisation, calibration and frequency comparison of the laser sources employed in the present measurements at a level of up to 10^(-15) by their referencing to the Swiss primary standard. While several European countries have already set up similar national and international networks for precision frequency distribution, Switzerland thus far possesses no such facilities. For Switzerland not to lose contact and competitiveness in the key future scientific domain of frequency metrology, it is imperative for our country to establish similar infrastructures. The present project will establish and test a prototype network connecting ETH Zurich, the University of Basel and the Federal Institute of Metrology METAS in Bern/Wabern. This prototype is intended to form the nucleus of a Swiss national network for precision frequency- and time distribution linking a broad range of national laboratories and research groups involved in frequency metrology in the future.These objectives can only be reached through the close collaboration of a highly interdisci- plinary team involving physical chemists, laser physicists, metrologists and telecommunication- network engineers which are assembled in the present project.
-