Data and Documentation
Open Data Policy
FAQ
EN
DE
FR
Suchbegriff
Advanced search
Publication
Back to overview
A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins.
Type of publication
Peer-reviewed
Publikationsform
Original article (peer-reviewed)
Publication date
2014
Author
Afroz Tariq, Skrisovska Lenka, Belloc Eulàlia, Guillén-Boixet Jordina, Méndez Raúl, Allain Frédéric H-T,
Project
NMR structure determination of protein-RNA complexes involved in pre-mRNA splicing and translation regulation
Show all
Original article (peer-reviewed)
Journal
Genes & development
Volume (Issue)
28(13)
Page(s)
1498 - 514
Title of proceedings
Genes & development
DOI
10.1101/gad.241133.114
Abstract
Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3' untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein-protein and protein-RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3' UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
-