Publication

Back to overview

Evolution of soil pores and their characteristics in a siliceous and calcareous proglacial area

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Musso Alessandra, Lamorski Krzysztof, Sławiński Cezary, Geitner Clemens, Hunt Allen, Greinwald Konrad, Egli Markus,
Project HILLSCAPE (HILLSlope Chronosequence And Process Evolution) - Identifying dominant controls on hillslope functioning and feedback processes by interdisciplinary experiments along chronosequences
Show all

Original article (peer-reviewed)

Journal CATENA
Volume (Issue) 182
Page(s) 104154 - 104154
Title of proceedings CATENA
DOI 10.1016/j.catena.2019.104154

Open Access

URL https://doi.org/10.5167/uzh-178348
Type of Open Access Repository (Green Open Access)

Abstract

Soil chronosequences in Alpine areas have often been applied to trace physical, mineralogical and chemical soil properties over time. How the soil pore system of undisturbed soils evolves, however, has not yet been clarified. We therefore investigated two soil chronosequences in the Swiss Alps spanning a time period from a few decades up to the Early Holocene/Late Pleistocene. One soil sequence developed on siliceous parent material in the Sustenpass (proglacial area of the Stein glacier), with soils aged from 30a to 10 ka while the second developed on calcaric parent material in the Klausenpass, with soils aged from 110a to 14 ka (proglacial area of the Griess glacier). We hypothesised that the overall pore size of the topsoil and consequently the relative proportion of macropores decrease with increasing soil age. The pore size characteristics were determined by using X-ray computed tomography. Independent of the parent material (calcareous vs siliceous), macroporosity decreased with time. The greatest changes seemed to occur between the Little Ice Age (LIA) and about 3–4 kyr of soil evolution. Vegetation composition and the functional richness of the plant community exert an influence on soils that developed on siliceous parent material by giving rise to more small pores. Besides pore sizes, pore characteristics also changed with time. In general, the tortuous structure of the soils became more complex with time. The evolution of the pore characteristics such as tortuosity, number and length of pore networks seem also to be related to biologic factors such as root properties, plant species and soil organic matter composition. It remains, however unanswered how these time-dependent biologic factors interact with and influence in detail the pore network. This aspect certainly merits investigation in greater detail in the future.
-