Publication

Back to overview

Role of DC-SIGN in Lassa virus entry into human dendritic cells.

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Publication date 2013
Author Goncalves Ana-Rita, Moraz Marie-Laurence, Pasquato Antonella, Helenius Ari, Lozach Pierre-Yves, Kunz Stefan,
Project Host cell invasion by Lassa virus
Show all

Original article (peer-reviewed)

Journal Journal of virology
Volume (Issue) 87(21)
Page(s) 11504 - 15
Title of proceedings Journal of virology
DOI 10.1128/JVI.01893-13

Abstract

The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.
-