Data and Documentation
Open Data Policy
FAQ
EN
DE
FR
Suchbegriff
Advanced search
Publication
Back to overview
Irradiance prediction intervals for PV stochastic generation in microgrid applications
Type of publication
Peer-reviewed
Publikationsform
Original article (peer-reviewed)
Author
Scolari Enrica, Sossan Fabrizio, Paolone Mario,
Project
Integration of Intermittent Widespread Energy Sources in Distribution Networks: Scalable and Reliable Real Time Control of Power Flows
Show all
Original article (peer-reviewed)
Journal
Solar Energy
Volume (Issue)
139
Page(s)
116 - 129
Title of proceedings
Solar Energy
DOI
10.1016/j.solener.2016.09.030
Open Access
URL
https://ac.els-cdn.com/S0038092X16304364/1-s2.0-S0038092X16304364-main.pdf?_tid=a36c23bf-001d-410d-b629-3c7437e0d077&acdnat=1544452386_95aea3451a1cb96ad99e2d9aa672eff5
Type of Open Access
Website
Abstract
The increasing interest in integrating volatile resources into microgrids implies the necessity of quantifying the uncertainty of photovoltaic (PV) production using dedicated probabilistic forecast techniques. The work presents a novel method to construct ultra-short-term and short-term prediction intervals (PIs) for solar global horizontal irradiance (GHI). The model applies the k-means algorithm to cluster observations of the clear-sky index according to the value of selected data features. At each timestep, the features are compared with the actual conditions to identify the representative cluster. The lower and upper bounds of the PI are calculated as the quantiles of the irradiance instances belonging to the selected cluster at a target confidence level. The validation is performed in 3 datasets of GHI measurements, each one of 85 days. The model is able to deliver high performance PIs for forecast horizons ranging from sub-second to intra-hour ahead without the need of additional sensing systems such as all-sky cameras.
-