Back to overview

Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Schneider T., Schellenberg M., Meyer S., Keller F., Gehrig P., Riedel K., Lee Y., Eberl L., Martinoia E.,
Project Molecular physiology of the raffinose family oligosaccharides (RFOs) in plants
Show all

Original article (peer-reviewed)

Journal Proteomics
Volume (Issue) 9
Page(s) 2668 - 77
Title of proceedings Proteomics


Although the vacuole is the most important final store for toxic heavy metals like cadmium (Cd(2+)), our knowledge on how they are transported into the vacuole is still insufficient. It has been suggested that Cd(2+) can be transported as phytochelatin-Cd(2+) by an unknown ABC transporter or in exchange with protons by cation/proton exchanger (CAX) transporters. To unravel the contribution of vacuolar transporters to Cd(2+) detoxification, a quantitative proteomics approach was performed. Highly purified vacuoles were isolated from barley plants grown under minus, low (20 microM), and high (200 microM) Cd(2+ )conditions and protein levels of the obtained tonoplast samples were analyzed using isobaric tag for relative and absolute quantitation (iTRAQ). Although 56 vacuolar transporter proteins were identified, only a few were differentially expressed. Under low-Cd(2+) conditions, an inorganic pyrophosphatase and a gamma-tonoplast intrinsic protein (gamma-TIP) were up-regulated, indicating changes in energization and water fluxes. In addition, the protein ratio of a CAX1a and a natural resistance-associated macrophage protein (NRAMP), responsible for vacuolar Fe(2+) export was increased. CAX1a might play a role in vacuolar Cd(2+) transport. An increase in NRAMP activity leads to a higher cytosolic Fe(2+) concentration, which may prevent the exchange of Fe(2+) by toxic Cd(2+). Additionally, an ABC transporter homolog to AtMRP3 showed up-regulation. Under high Cd(2+) conditions, the plant response was more specific. Only a protein homologous to AtMRP3 that showed already a response under low Cd(2+) conditions, was up-regulated. Interestingly, AtMRP3 is able to partially rescue a Cd(2+)-sensitive yeast mutant. The identified transporters are good candidates for further investigation of their roles in Cd(2+) detoxification.