Back to overview

Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics.

Type of publication Peer-reviewed
Publikationsform Review article (peer-reviewed)
Author Zeilhofer Hanns Ulrich, Ralvenius William T, Acuña Mario A,
Project Dorsal Horn Neuronal Circuits Processing Itch
Show all

Review article (peer-reviewed)

Journal Advances in pharmacology (San Diego, Calif.)
Volume (Issue) 73
Page(s) 71 - 96
Title of proceedings Advances in pharmacology (San Diego, Calif.)
DOI 10.1016/bs.apha.2014.11.007


GABAA receptors (GABA(A)Rs) and glycine receptors are key elements of the spinal control of nociception and pain. Compromised functioning of these two transmitter systems contributes to chronic pain states. Restoring their proper function through positive allosteric modulators should constitute a rational approach to the treatment of chronic pain syndromes involving diminished inhibitory spinal pain control. Although classical benzodiazepines (i.e., full agonists at the benzodiazepine binding site of GABA(A)Rs) potentiate synaptic inhibition in spinal pain controlling circuits, they lack clinically relevant analgesic activity in humans. Recent data obtained from experiments in GABA(A)R point-mutated mice suggests dose-limiting sedative effects of classical nonspecific benzodiazepines as the underlying cause. Experiments in genetically engineered mice resistant to the sedative effects of classical benzodiazepines and studies with novel less sedating benzodiazepines have indeed shown that profound antihyperalgesia can be obtained at least in preclinical pain models. Present evidence suggests that compounds with high intrinsic activity at α2-GABA(A)R and minimal agonistic activity at α1-GABA(A)R should possess relevant antihyperalgesic activity without causing unwanted sedation. On-going preclinical studies in genetically engineered mice and clinical trials with more selective benzodiazepine site agonists should soon provide additional insights into this emerging topic.