Publication

Back to overview

Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations

Type of publication Peer-reviewed
Publikationsform Original article (peer-reviewed)
Author Zellweger Christoph, Emmenegger Lukas, Firdaus Mohd, Hatakka Juha, Heimann Martin, Kozlova Elena, Spain T. Gerard, Steinbacher Martin, van der Schoot Marcel V., Buchmann Brigitte,
Project ICOS-CH: Integrated Carbon Observation System in Switzerland
Show all

Original article (peer-reviewed)

Journal Atmospheric Measurement Techniques
Volume (Issue) 9(9)
Page(s) 4737 - 4757
Title of proceedings Atmospheric Measurement Techniques
DOI 10.5194/amt-9-4737-2016

Open Access

URL http://doi.org/10.5194/amt-9-4737-2016
Type of Open Access Publisher (Gold Open Access)

Abstract

Until recently, atmospheric carbon dioxide (CO2) and methane (CH4) measurements were made almost exclusively using nondispersive infrared (NDIR) absorption and gas chromatography with flame ionisation detection (GC/FID) techniques, respectively. Recently, commercially available instruments based on spectroscopic techniques such as cavity ring-down spectroscopy (CRDS), off-axis integrated cavity output spectroscopy (OA-ICOS) and Fourier transform infrared (FTIR) spectroscopy have become more widely available and affordable. This resulted in a widespread use of these techniques at many measurement stations. This paper is focused on the comparison between a CRDS "travelling instrument" that has been used during performance audits within the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) with instruments incorporating other, more traditional techniques for measuring CO2 and CH4 (NDIR and GC/FID). We demonstrate that CRDS instruments and likely other spectroscopic techniques are suitable for WMO/GAW stations and allow a smooth continuation of historic CO2 and CH4 time series. Moreover, the analysis of the audit results indicates that the spectroscopic techniques have a number of advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurements.
-