Lead
“Magnetic Resonance Imaging”, besser bekannt als MRI, ist eine der wichtigsten Methoden in der diagnostischen Medizin. Damit hochaufgelöste Bilder entstehen, müssen Inhomogenitäten im Magnetfeld genau und dynamisch, das heisst während der Messung, bekannt sein. Das Magnetfeld wird mit Sonden ausgemessen. Diese enthalten paramagnetische Metallkomplexe und Substanzen mit möglichst vielen, chemisch gleichwertigen Fluorid-Ionen. Diese Mischung muss gewisse physikalisch-chemische Bedingungen erfüllen, um den Ansprüchen der Diagnostik zu genügen. Bis heute sind keine idealen Sonden verfügbar. In diesem Projekt erforschen und entwickeln wir sogenannte ionischen Flüssigkeiten, welche eine sehr hohe Fluordichte haben und in denen paramagnetische Komplexe lösbar sind. Das Ziel des Projektes sind neue Sonden für MRI welche optimale physikalische Parameter haben, nicht toxisch sein sollten und zudem über lange Zeitdauer eingesetzt werden können.

Lay summary

Magnetic Resonance Imaging (MRI) is a pivotal modality in medical diagnostics. To move MRI towards faster and quantitative imaging, the magnetic field dynamics used for MR image encoding must be known with great accuracy. This is provided by magnetic field monitoring based on fluorine NMR field probes. Currently available fluorine compounds do not have short enough relaxation times in combination with the required sensitivity (nucleus density), resulting in insufficient monitoring bandwidth. Probes that overcome this limitation must meet a number of physical and application-related parameters; i) high 19F nuclei density, ii) single 19F resonance (all 19F magnetically equivalent), iii) T1 ≈ T2< 200 μs, iv) ability to confine in capillaries and v) long-term chemical stability and low toxicity. To match these requirements for a useful probe, we will synthesize ionic liquids (IL) with highly homo-fluorinated anions or cations, dissolve paramagnetic complexes and assess the parameters of such solutions. To address the question of very high 19F density, new homo-perfluorinated compounds such as [C(CF3)5]- (CpF*) will be prepared. Alteration of cations alters viscosity and solubility of the paramagnetic substances. Furthermore, we will focus on ions comprising the perfluorinated tert-Bu (tbuF*) fragment. This first approach is based on ILs as 19F carriers. In parallel, complexes of paramagnetic cations with homo-perfluorinated ligands will be synthesized. Ionic complexes will directly lead to ILs with appropriate counter-ion choice; neutral complexes are highly soluble in non-polar solvents. It is the objective of this study to obtain an ultimate compound which overcomes the deficiencies of current NMR field probes.