Lead
Die Herzinsuffizienz betrifft weltweit 22 Mio. Patienten mit einer Prävalenz, die mit dem Alter zunimmt. Trotz vielfältiger Bemühungen und entsprechender Erfolge bei der Behandlung der Herzinsuffizienz, sterben weiterhin 50% der Patienten innerhalb der ersten 5 Jahre nach erfolgter Diagnose.Im Rahmen des vorliegenden Projektes werden diagnostische Verfahren, basiered auf der Magnetresonanzbildgebung, für eine bessere Charakterisierung der Gewebeveränderungen und des Stoffwechsels in der Herzinsuffizienz entwickelt und getestet. Die Entwicklungen erfolgen insbesondere in Hinblick auf mögliche stammzellenbasierte Interventionen, mit deren Hilfe mechanisch inaktive Gebiete des Herzmuskels "reaktiviert" werden können.

Lay summary

Magnetic Resonance Imaging (MRI) has become a prime diagnostic modality. MRI is considered the gold standard for assessing cardiac function in the clinic.

Beyond morphological imaging, MRI offers the unique feature of non-invasively probing tissue properties at a microscopic scale. While Diffusion Weighted Imaging and Diffusion Tensor Imaging have been well established for stationary organs including the brain, its application to the in-vivo heart is very challenging as cardiac and respiratory motion of the heart is orders of magnitude greater than the diffusion processes.

In addition to structural information about the heart as measured by MRI, Magnetic Resonance Spectroscopy (MRS) allows to assess tissue metabolism. To this end, however, the sensitivity of the experiment needs to be enhancedby order of magnitude. This is achieved by a technique called Dynamic Nuclear Polarization (DNP). In DNP an endogenous, metabolically active substrate which is taken up by the heart, is magnetized in a DNP polarizer and subsequently injected back into the blood stream in-vivo. Following this, metabolic reactions can be observed using MRS during a short time window, giving unique insights into the use of the "fuels" consumed by the heart.

It is the aim of the present project  to develop, validate and translate MRI and MRS methodology to map microstructural and metabolic information alongside with functional indices of the in-vivo heart for monitoring and guiding cardiac regeneration therapy.