Project

Back to overview

ALPWAX - Developing a molecular ISOSCAPE for an alpine watershed to mechanistically assess the spatial variability of leaf wax lipid dD values in plants, soils and sediments.

English title ALPWAX - Developing a molecular ISOSCAPE for an alpine watershed to mechanistically assess the spatial variability of leaf wax lipid dD values in plants, soils and sediments.
Applicant Kahmen Ansgar
Number 147007
Funding scheme Project funding
Research institution University of Basel Botanical Institute
Institution of higher education University of Basel - BS
Main discipline Other disciplines of Environmental Sciences
Start/End 01.01.2014 - 30.04.2017
Approved amount 342'210.00
Show all

All Disciplines (2)

Discipline
Other disciplines of Environmental Sciences
Botany

Keywords (3)

stable isotopes; paleohydrology ; leaf wax lipids

Lay Summary (German)

Lead
n-Alkane sind Kohlenwasserstoffe, die in der Cuticula von Blättern enthalten sind. n-Alkane sind biologisch schwer abbaubar und akkumulieren in Böden und Sedimenten. Die Wasserstoffisotopenzusammensetzung (d2H) der n-Alkane wird von den hydrologischen Bedingungen unter denen eine Pflanze gewachsen ist geprägt. Die Kombination aus langer Haltbarkeit und einem hydrologischen Signal in den d2H Werten machen n-Alkane zu einem begehrten Proxy in der Paleohydrologie. Wichtige Prozesse, die das d2H Signal der n-Alkane prägen sind jedoch nicht gut verstanden. So ist es unklar, ob die Aufzeichnung des Signals bei verschiedenen Arten unterschiedlich funktioniert. Aufgrund dieser Umstände führt die Interpretation von d2H Werten in n-Alkanen zu Unsicherheiten in der Paleohydrologischen Interpretation.
Lay summary
Das Übergeordneter Ziel unserer Untersuchungen ist es einen Beitrag zu leisten, der es erlaubt in Zukunft paleohydrologische Daten aus n-Alkan d2H Werten mit höherer Genauigkeit interpretieren zu können. In diesem Projekt werden wir daher wichtige aber noch unverstandene Prozesse untersuchen, die die d2H Werte in n-Alkanen steuern. Insbesondere interessiert uns, ob der Zusammenhang zwischen hydrologischem Signal und d2H Werten in n-Alkanen von verschiedenen Pflanzenarten mit unterschiedlicher Präzision aufgezeichnet wird. Um dies herauszufinden werden wir die d2H Werte bei verschiedenen Arten entlang von hydrologischen Gradienten in einem alpinen Wassereinzugsgebiet untersuchen.
Direct link to Lay Summary Last update: 24.02.2014

Responsible applicant and co-applicants

Employees

Publications

Publication
Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools
Newberry SL Prechsl UE Kahmen A (2017), Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools, in Isotopes in Environmental and Health Studies, 53, 368-381.
Cryogenic vacuum artefacts do not affect plant water-uptake studies using stable isotope analysis
Newberry SL Nelson DB Kahmen A, Cryogenic vacuum artefacts do not affect plant water-uptake studies using stable isotope analysis, in Ecohydrology.

Collaboration

Group / person Country
Types of collaboration
Prof. Stefan Arndt, University of Melbourne, Australia Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
Dr. Dirk Sachse, University of Potsdam, Germany Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
- Exchange of personnel
Prof. Nina Buchmann, ETH Zurich, Switzerland Switzerland (Europe)
- Research Infrastructure
Prof. Tim Eglinton, ETH Zurich, Switzerland Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Jason West, Texas A&M University, USA United States of America (North America)
- in-depth/constructive exchanges on approaches, methods or results
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
LIST Seminar Series Individual talk Isotopic memory effects in extractable soil waters 24.01.2017 Esch-sur-Alzette, Luxembourg Newberry Sarah;
AGU 2016 Poster The integration of n-alkane δ2H values into sedimentary archives in alpine lake catchments 05.12.2016 San Francisco , United States of America Newberry Sarah;
Potsdam Geochemical Seminar Series Individual talk The integration of n-alkane δ2H values into sedimentary archives at the landscape level scale 10.10.2016 GFZ- Potsdam, Germany Newberry Sarah;
JESIUM 2016 Poster The integration of n-alkane δ2H values into sedimentary archives at the landscape level scale 07.09.2016 Ghent, Belgium Newberry Sarah;
JESIUM 2016 Talk given at a conference Isotope memory effects between soil water pools influence the isotopic composition of available plant water 06.09.2016 Ghent, Belgium Newberry Sarah;
Botany seminar series Individual talk The integration of n-alkane δ2H values into sedimentary archives in alpine lake catchments 17.11.2015 University of Basel, Switzerland Newberry Sarah;
Goldschmidt 2014 Talk given at a conference n-Alkane biosynthetic fractionation is not constant in field-grown Salix 13.06.2014 Sacremento, United States of America Newberry Sarah;


Abstract

Leaf wax lipids are long-chained hydrocarbons that are vital components of plant cuticles. Leaf wax lipids are abundant in leaves, soils and sediments and can persist in the environment over millions of years. What makes leaf wax lipids unique is that their stable hydrogen isotope composition (dD) contains information on precipitation and evapotranspiration. With this exceptional combination of properties, leaf wax lipids and their dD values are now being celebrated as the much-needed (eco)hydrological proxies that provide information on the hydrological cycle across new spatial and temporal scales. The processes determining the dD values of leaf wax lipids on the level of an individual leaf are beginning to be well understood. Little is, however, known on the watershed level variability of leaf wax lipid dD values and on the spatial variability of the abiotic (precipitation) and biotic (evapotranspiration) hydrological signals that are recorded in leaf wax lipid dD values. Moreover, the integration of the inherent variability of leaf wax lipid dD signals that has been observed within and among different plant communities into the soil and sediment record is presently unknown. Despite their enormous potential these uncertainties have to date prevented the application of leaf wax lipid dD values as quantitative hydrological proxies. The proposed research project will use an ETH experimental watershed in the Swiss Alps as a model system to study the spatial variability of leaf wax lipid dD values within and among plant communities, soils and sediments to assess the abiotic and biotic drivers of this variability at the landscape level. The key goal of the project is to establish linkages between the known processes that determine leaf wax lipid dD values at the leaf level with 1) the spatial variability of those same processes at the watershed level; and 2) the processes that ultimately integrate that variability in leaf wax lipid dD values in the soil and sediment record across the watershed. A particularly novel aspect of the proposed research is the development of the first molecular isoscapes, literally maps of the variation in leaf wax lipid dD values that are based on mechanistic models. These isoscapes will allow for the first time a mechanistic spatial assessment of abiotic and biotic information that is recorded in the dD values of leaf wax lipids in plants, soils, and sediments across an entire watershed. The proposed research will allow a much-improved quantitative interpretation of leaf wax lipid dD values from sediment records when these are used as hydrological proxies in paleohydrological applications. In addition, the proposed investigations will open the door to employ leaf wax lipid dD values for novel geospatial applications, e.g. in tracing the flow of organic compounds across a watershed and from terrestrial ecosystems to the ocean.
-