Project

Back to overview

Revealing 2D magnetism via nanoscale magnetometry

English title Revealing 2D magnetism via nanoscale magnetometry
Applicant Poggio Martino
Number 207933
Funding scheme Project funding
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Condensed Matter Physics
Start/End 01.04.2022 - 31.03.2026
Approved amount 898'789.00
Show all

Keywords (7)

nano-magnetism; torque magnetometry; experimental condensed matter physics; two-dimensional magnetism; SQUID; two-dimensional materials; MFM

Lay Summary (Italian)

Lead
I magneti bidimensionali sono materiali magnetici formati da uno o più strati ultrasottili, fino a raggiungere lo spessore di un singolo atomo. La scoperta di questi materiali nel 2017 ha aperto una nuova frontiera nello studio del magnetismo. Da un lato è interessante capire come e perché il magnetismo emerge in questi sistemi; dall'altro è importante investigare le loro potenziali applicazioni. Magneti di questo tipo potrebbero consentire la costruzione di dispositivi sempre più sottili ed efficienti e memorie sempre più potenti.
Lay summary
Soggetto e obiettivo

In questo progetto, proponiamo uno studio di magneti bidimensionali con tecniche ad alta sensibilità ed ad altra risoluzione spaziale. Usando la microscopia a scansione di sonda per visualizzare i campi magnetici creati da questi magneti e magnetometri ultrasensibili per misurare le loro proprietà magnetiche, intendiamo capire meglio la fisica di questi materiali. In particolare, vorremo misurare importanti proprietà che -- finora -- tecniche convenzionali non sono state in grado di misurare: per esempio, l'anisotropia magnetica, il disordine e la disomogeneità.

Contesto socio-scientifico

Il nostro lavoro permetterà di raccogliere nuove e importanti informazioni su questi materiali ancora poco conosciuti. I risultati ci consentiranno di capire quali sono le interazioni più importanti in questi sistemi e come possiamo sfruttarli per creare dispositivi magnetici più efficienti e più utili di quelli convenzionali. 

Una volta che abbiamo capito la fisica dei magneti bidimensionali, possiamo usarli per fare ingegneria dei materiali. La possibilità di creare etero-strutture, addirittura controllando le interazioni fra gli strati bidimensionali, potrebbe portare alla creazione di nuovi materiali con proprietà magnetiche mai realizzate altrove.
Direct link to Lay Summary Last update: 29.03.2022

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
171003 Discovery and Nanoengineering of Novel Skyrmion-hosting Materials 01.10.2017 Sinergia
180604 NCCR SPIN (phase I) 01.08.2020 National Centres of Competence in Research (NCCRs)
178863 New Scanning Probes for Nanomagnetic Imaging 01.04.2018 Project funding
183306 High Performance Transmission Electron Microscope for Present and Future Nanomaterials 01.01.2019 R'EQUIP
185902 NCCR QSIT: Quantum Science and Technology (phase III) 01.01.2019 National Centres of Competence in Research (NCCRs)

Abstract

Two-dimensional (2D) magnets have emerged as a new frontier in magnetism, both in terms of fundamental questions - including why such magnetism is stable at all - as well as from the device engineering point of view. In general, the stacking, twisting, and combining of van der Waals (vdW) materials with control down to individual atomic layers has started a revolution in heterostructure engineering. Layer-by-layer control offers a multitude of possible material combinations, without constraints imposed by lattice mismatch, along with the prospect of making compact devices, in which large electric fields can easily be applied. These new tools give researchers unprecedented control of interactions and band structure, as exemplified by the 2018 realization of superconducting twisted bilayer graphene. In the realm of magnetism, these methods can be used to tune the magnetic properties of a material or even to make materials, which are non-magnetic in the bulk, magnetic in 2D. Most importantly, both in view of understanding the physics of 2D magnetism and exploiting it for applications, vdW engineering may allow us to realize new and useful magnetic phases, which are only possible in 2D. In order to fully take advantage of these new developments, we must understand the role of anisotropy, disorder, inhomogeneity, and characteristic length-scales in 2D magnets and their heterostructures. Such investigations require sensitive local probes and techniques for measuring magnetism in small volumes. Our group, which has long worked at the forefront of sensitive magnetic imaging and torque magnetometry, is ideally positioned for such measurements. Here, we propose to apply our unique and highly sensitive tools to three types of measurements in 2D magnets:•The characterization of static magnetism: determining the magnetic state and its dependence on the number of layers, anisotropy, as well as the presence of spatially modulated states, domains, defects, and inhomogeneities. •The study of phase transitions and magnetic reversal: measuring the stability of magnetic phases, the nature of phase transitions, the process of magnetic reversal, and the role of domains and inhomogeneity therein.•Understanding how to engineer 2D magnets: observing the effects of stacking, twisting, and applying electric fields to controllably induce phase transitions, magnetic reversal, magnetic texture, or new magnetic phases. The work of unravelling the mechanisms behind 2D magnetism is in its infancy. Given the inadequacy of conventional magnetic probes, we are convinced that our unique nanometer-scale magnetic field imaging and ultrasensitive torque magnetometry tools have much to contribute towards this effort. The results can be expected to have implications for 2D spintronic devices, 2D antiferromagnets, and the design of quantum materials via 2D vdW engineering in general.
-