Project

Back to overview

Research in High Energy Physics with the CMS detector

English title Research in High Energy Physics with the CMS detector
Applicant Canelli Florencia
Number 204975
Funding scheme Project funding (Div. I-III)
Research institution Physik-Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Particle Physics
Start/End 01.10.2021 - 30.09.2024
Approved amount 1'033'856.00
Show all

Keywords (12)

high energy physics; pixel detectors; Higgs boson; LHC; particle physics; top quark; CMS; Effective Field Theory; instantons; matrix element method; collider physics; unfolding

Lay Summary (German)

Lead
Dies ist ein Antrag zur Förderung der Forschung im Rahmen des CMS (Compact Muon Solenoid) Experiments am CERN (Europäische Organisation für Kernforschung) mit hochenergetischen Protonenkollisionen am LHC (Large Hadron Collider).
Lay summary
Dieses Gesuch fördert die Forschung mit dem CMS (Compact Muon Solenoid) Experiment am CERN (Europäische Organisation für Kernforschung), welches hochenergetische Protonkollisionen vom LHC (Large Hadron Collider) nutzt. Der LHC ist seit über 10 Jahren in Betrieb und obwohl erst 5% der erwarteten Datenmenge gesammelt wurde, hat der LHC bereits neue Forschungsrichtungen geöffnet, unsere Fragestellungen verfeinert und unsere Analysemethoden vorangebracht.

Diese Forschungsarbeit legt den Fokus auf die Auswertung der kürzlich gesammelten Daten, um einige der fundamentalen Fragen des Standardmodells der Teilchenphysik bezüglich des Ursprungs der Masse der Elementarteilchen zu beantworten. Sie untersucht Abweichungen von den Vorhersagen des Standardmodells mit einer ausreichenden Genauigkeit, um neue Phänomene aufdecken zu können. Trotz des Ausbleibens von direkter Evidenz für neue Physik am LHC kann diese jenseits der Reichweite der Kollisionsenergie des LHC existieren. Neue Wechselwirkungen können im Rahmen der effektiven Feldtheorie (EFT) parametrisiert werden und den Experimenten am LHC zugänglich sein. Dieses Gesuch sucht im Kontext der EFT nach neuer Physik in den Wechselwirkungen des Top-Quarks und des Higgs-Bosons, da diese besonders empfindlich sind bezüglich vieler EFT Parameter. Zusätzlich führt dieses Gesuch eine neue Datenanalyse ein, um die innere Struktur der starken Wechselwirkung aufzudecken. In der Analyse wird nach Instantonen gesucht, welche mit den fundamentalen Aspekten der Quantenchromodynamik verknüpft sind. 

Um das Entdeckungspotenzial des CMS Experiments mit dem verbesserten Leistungsvermögen des HL-LHC ab 2027 zu maximieren, enthält dieses Gesuch die Planung und Entwicklung von Prototypen für Teile eines neuen Phase-2 Pixel Detektors, insbesondere eine Erweiterung des Detektors in der vorwärts gerichteten Region über die momentane Pseudorapidität von 2.5 hinaus auf 4.0.

Direct link to Lay Summary Last update: 22.10.2021

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
201469 FLARE: Maintenance & Operation for the LHC Experiments 2021-2024 01.04.2021 FLARE
201476 FLARE 2021-2025: Operation, Computing and Upgrades of the CMS Experiment 01.04.2021 FLARE
201466 FLARE - CSCS Tier 2 LHC Computing Infrastructure 01.04.2021 FLARE
182037 Research in High Energy Physics with the CMS detector: measurements and searches with top quarks 01.10.2018 Project funding (Div. I-III)

Abstract

While the predictions of the standard model (SM) have so far been found to agree with experimental observations, some phenomena are outside of its realm. The SM is therefore assumed to be a low-energy simplification of a larger theory. Searching for extensions to the SM is of paramount importance in modern particle physics and has been one of the motivations for the construction of the Large Hadron Collider (LHC) at CERN. The top quark, being the heaviest SM particle, may play a special role in physics beyond the standard model (BSM). The Higgs boson is the next frontier in collider particle physics, it probes the mechanism of electroweak symmetry breaking and mass generation that are precisely defined in the SM.The LHC has been running for more than 10 years, and with only 5% of the anticipated data, it has opened new directions of exploration, sharpening our questions, and advancing our analysis methods. This proposal addresses the fundamental shortcomings of the SM regarding the origins of the mass of fundamental particles. It explores with sufficient accuracy to reveal new phenomena through deviations from the properties predicted by the SM. In particular, the proposal focuses on the relationship of the top quark with the Higgs boson, which provides its mass, to help elucidate the nature of electroweak symmetry breaking and our understanding of the weak scale, and to search for CP violation in order to explain the matter-antimatter asymmetry of the observed universe. Despite the lack of direct evidence for new physics at the LHC, new physics can exist beyond the reach of the LHC’s collision energy and new interactions which can be parameterized by the effective field theory (EFT) framework can be accessible to the LHC experiments. This proposal searches for new physics in the context of EFT in the interactions of top quarks and Higgs bosons since they are specially sensitive to many EFT parameters. In addition, we propose a new analysis to unravel the inner workings of QCD by searching for instantons, which are linked to chiral symmetry breaking and confinement. Complementarily, we propose innovate methods of analysis to pursue this research.By the end of 2024, the LHC will have produced about 300 fb-1 of integrated luminosity, and will be shut down until 2027 for accelerator and detector upgrades to begin the HL-LHC program, which has a goal of 3000 fb-1 of integrated luminosity by around 2040. To maximize the discovery potential of the CMS experiment, this group is engaged in thedesign, prototype, and construction of the new ”phase-II pixel detector”, with improved capabilities for HL-LHC running, notably an extension of tracking in the forward region beyond the current pseudo-rapidity of 2.5, out to 4.0, called TEPX.In this proposal, I outline work packages to finish prototyping and start the construction of TEPX. This improved tracking range will provide better identification for vector boson fusion processes, and improved missing energy resolution and pileup rejection for all CMS analyses.This proposal funds PhD students and a postdoctoral researcher to address the physics questions above and to continue developing this new CMS inner tracking detector.
-