Project

Back to overview

Understanding the Flavour Anomalies

Applicant Serra Nicola
Number 204238
Funding scheme Project funding
Research institution Physik-Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Particle Physics
Start/End 01.10.2021 - 30.09.2025
Approved amount 1'512'118.00
Show all

Keywords (9)

Data Analysis; Flavour Phyisics; Flavour Anomalies; b-hadron decays; b-meson decays; LHCb; Lepton Flavour Universality; Particle Physics; Heavy Flavour Physics

Lay Summary (Italian)

Lead
La ricerca di fisica oltre il Modello Standard, spesso chiamata in gergo Nuova Fisica, può essere considerato il "Sacro Graal" della fisica delle particelle. Questa potrebbe spiegare cosa sia la Materia Oscura, perchè la materia abbia prevalso sull'antimateria nell'evoluzione dell'Universo e la struttura delle particelle elementari. Una delle principali ragioni per costruire il Large Hadron Collider al CERN di Ginevra è stata proprio la ricerca di Nuova Fisica. Recentemente, delle anomalie sono state misurate nell'esperimento LHCb, queste potrebbero essere le prime crepe del Modello Standard e potrebbero portare alla scoperta di Nuova Fisica nel prossimo futuro.
Lay summary
Il gruppo di LHCb dell'Università di Zurigo ha avuto un ruolo chiave nella misura delle anomalie ad LHCb. Abbiamo misurato la prima anomalia nel 2013 e l'ultima misura da noi effettuata (denominata RK) è considerata la prima evidenza della rottura dell'Universalità Leptonica

L'Universalità Leptonica è una proprietà fondamentale del Modello Standard e, se venisse confermata, sarebbe una indiscussa prova di Nuova Fisica, ed implicherebbe l'esistenza di una quinta nuova forza, che si aggiungerebbe alle quattro note: Forza Gravitazionale, Elettromagnetica, Forte e Debole. 

In questo progetto effettueremo delle misure che saranno in grado di confermare o meno le anomalie e che getteranno luce sulla loro natura. In particolare, le nostre misure consentiranno di capire a quale scala di energie possiamo aspettare di osservare nuove  particelle che possono mediare questa ipotetica nuova interazione fondamentale. 
Direct link to Lay Summary Last update: 14.01.2022

Lay Summary (English)

Lead
The search for Physics Beyond the Standard Model, often referred to as New Physics, is the "Holy Grail" of experimental Particle Physics. It could explain what is Dark Matter and why matter prevailed over anti-matter in the evolution of the Universe. The search for New Physics was also one of the main motivations to build the Large Hadron Collider at CERN in Geneva. Recently, some measurements at the LHCb experiment showed anomalous behavior. These anomalies might be the first cracks of the Standard Model and could lead to the discovery of New Physics in the near future.
Lay summary
The LHCb group at the University of Zurich had a key role in measuring the anomalies at LHCb. We measured the first of them in 2013 and our last measurement (known as RK) is considered the first evidence for breaking of Lepton Universality


Lepton Universality is a fundamental property of the Standard Model and if confirmed it would be an unambiguous prove of New Physics. It would imply the existence of a fifth fundamental force, in addition to the other known four: Gravitational, Electromagnetic, Strong, and Weak forces. 

In this project I propose a set of measurements that could confirm/disprove the anomalies, shedding light into their nature. In particular, our measurements will allow understanding what is the energy scale of this hypothetical new interaction and if new particles could be observed directly in near-future experiments.  


Direct link to Lay Summary Last update: 14.01.2022

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
201469 FLARE: Maintenance & Operation for the LHC Experiments 2021-2024 01.04.2021 FLARE
155990 Search for hidden particles: exploring the high intensity frontier 01.01.2016 SNSF Starting Grants
201466 FLARE - CSCS Tier 2 LHC Computing Infrastructure 01.04.2021 FLARE
186172 FLARE - Computing Infrastructure for LHC Experiments 01.04.2019 FLARE
173598 FLARE: Maintenance & Operation for the LHC Experiments 2017-2020 01.04.2017 FLARE
201540 Building and Commissioning the Mu3e Experiment 01.05.2021 FLARE
173580 FLARE 2017-2020: Operation and upgrade of the LHCb experiment 01.04.2017 FLARE
201480 FLARE 2021-2022: Operation and upgrade of the LHCb experiment 01.04.2021 FLARE
182622 Flavour: a portal to discover new physics 01.04.2019 Project funding

Abstract

While the Standard Model of Particle Physics is incomplete and cannot explain phenomena such as the existence of Dark Matter and the large asymmetry between matter and anti-matter in the Universe, we still do not have a clear microscopic evidence of physics Beyond the Standard Model (BSM). The non-observation (so far) of new particles at LHC and the lack of observations of dark matter at direct detection experiments, has led the community to broaden their searchers. An interesting pattern of deviations from SM expectations has been recently observed in decays of B-mesons. These Flavour Anomalies consist of measurements angular observables in the decay B --> K0*µ+µ- and tests of lepton flavour universality in rare and semileptonic B-meson decays.Historically, flavour physics and indirect searches have paved the way to revolutionary discoveries in particle physics, that only decades later were observed directly. This was for instance the case for the discovery of the charm quark, the discovery of the third family of quarks and the discovery of neutral currents. Are Flavour anomalies the dawn of a new revolution in particle physics? Answering this important question requires meticulous work and several complementary measurements of rare and semileptonic b-hadron decays. This is the essence of this proposal and the main research focus of my group for the coming four years.If the flavour anomalies are due to New Physics this would revolutionize the field. In this scenario, our proposed measurements will be essential to understand and characterize the structure and properties of NP. If the anomalies are not confirmed, these measurements will allow to improve our phenomenological and experimental understanding of B-meson decays which is fundamental for future planned flavour experiments and sets very stringent constraints on new models that have recently been proposed.
-