Project

Back to overview

High-efficiency high-temperature heat pumps with temperature glide

English title High-efficiency high-temperature heat pumps with temperature glide
Applicant Bardow André
Number 203645
Funding scheme Bridge - Discovery
Research institution Engineering Design and Computing Mechanical and Process Engineering ETH Zurich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.04.2022 - 31.03.2026
Approved amount 1'500'000.00
Show all

Keywords (12)

computer-aided molecular design; heat pumps; refrigerant; heat generation; industrial heating; high-temperature heat pumps; energy transition; refrigerant mixtures; zeotropic mixtures; aceotropic mixtures; temperature glide; integrated process design

Lay Summary (German)

Lead
Die Dekarbonisierung der Wärmeerzeugung ist eine zentrale Herausforderung der Energiewende. Für den Gebäudesektor hat sich die Wärmepumpe als Schlüssel-Technologie etabliert, da sie hocheffizient Strom in Wärme umwandelt. Mit Strom aus erneuerbaren Energiequellen erfolgt die Wärmeerzeugung dann nahezu CO2-neutral.Auch für industrielle Wärme gilt die Wärmepumpe als entscheidende Zukunftstechnologie. Industrielle Anwendungen erhöhen aber deutlich die Herausforderungen: Die Temperaturen sind höher (100 - 250 °C) und die Variabilität der Wärmequellen und -senken ist grösser als im Gebäudesektor. Heutige Industriewärmepumpen sind in ihrer Maximaltemperatur stark begrenzt (ca. 150 °C) und nur unflexibel einsetzbar. Daher werden Industriewärmepumpen aktuell anwendungsspezifisch entworfen. Dieser Umstand erhöht die Kosten und hemmt die breite Kommerzialisierung.
Lay summary

Inhalt und Ziele des Forschungsprojektes

Eine vielversprechende Lösung für industrielle Wärmepumpen sind Kältemittelgemische. Durch ihre besonderen thermodynamischen Eigenschaften können sie Flexibilität, Effizienz und maximale Temperatur von Industriewärmepumpen gleichzeitig erhöhen. Bisher wurde der Einsatz von massgeschneiderten Kältemittelgemischen nur wenig erforscht.

Dieses Projekt erarbeitet die technischen und thermodynamischen Grundlagen für den Einsatz von Kältemittelgemischen und identifiziert geeignete Anwendungsfelder. Hierzu werden Industriewärmepumpen mit Kältemittelgemischen experimentell demonstriert.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojektes

Die Industrielandschaft der Schweiz beinhaltet sowohl zahlreiche potenzielle Anwender, als auch eine ausgeprägte Wärmepumpenindustrie. Die im Projekt entwickelte neue Generation von Industriewärmepumpen ermöglicht den Anwendern eine ökonomische Dekarbonisierung der Wärmeerzeugung und sichert zudem die Innovationskraft der Wärmepumpenindustrie.
Direct link to Lay Summary Last update: 14.01.2022

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
180544 NCCR Catalysis (phase I) 01.08.2020 National Centres of Competence in Research (NCCRs)

Abstract

Decarbonization is one of the major challenges for our society. The industrial sector is particularly important to decarbonize as it is pivotal for economic prosperity but emits more than 20% of global greenhouse gases. At the same time, industrial emissions are often hard-to-abate. The particular challenge addressed by this proposal is industrial heat generation up to 200 °C, which accounts for 20 to 30% of the vast industrial heat demand. To decarbonize industrial heat generation, both national and international studies identified electrically driven heat pumps as a key technology. Replacing current fossil-based heating with industrial heat pumps can reduce carbon dioxide emissions by 80% in the short term and offers to reach carbon neutrality in the long term by using green electricity. However, heat pumps have penetrated industry slowly so far. In particular, higher investment costs and only moderate efficiencies of the currently available industrial heat pumps hamper the transition. Since current industrial heat pumps emerged mainly from household applications, they are hardly customized to industrial applications, which, in particular, require large temperature changes of heat sink and source.This proposal aims to overcome the challenges of industrial heat pumps by introducing a holistic design approach for refrigerants and process designs with temperature glide, e.g., realized by refrigerant mixtures. Heat pumps with temperature glide can optimally meet the specific requirements of industrial applications, significantly increasing efficiencies. In particular, for high temperature, the potential benefit is expected to be at 50% higher efficiency (COP) over conventional heat pumps, as estimated for several widespread application cases (i.e. drying, pressurized hot water, heating, food preparation). This increase will provide the crucial technology push for accelerated market penetration since operating costs are significantly reduced. As a further benefit, the use of refrigerants with temperature glide enables higher temperatures with standard heat pump components enlarging their field of application without increasing cost. Although the theoretical potential of refrigerants with temperature glide is well-known, neither experimental demonstration nor a systematic search for appropriate refrigerants and process designs has been carried out. Currently, the knowledge gap in the refrigerant selection and handling in practice is still too large to trigger industrial research and development.This project combines the modeling and experimental elements needed to bridge the gap towards the faster market introduction of high-efficiency industrial heat pumps with temperature glide. Refrigerants will be optimized for typical industrial applications by an integrated refrigerant and process design framework. An experimental high temperature test stand and a heat pump breadboard system will be developed to enable validation and demonstration. An industrial advisory committee represents the stakeholders along the full value chain to accelerate industrial implementation and dissemination and to provide specific use cases. The project will demonstrate the benefits of heat pumps with temperature glide, provide a guide that maps refrigerants to industrial applications, and a guideline for handling the novel heat pumps in practice. As a further long-term impact of the project, the installed test stand will serve for development and quality assurance, and it is aimed as a base of a Swiss competence center for industrial heat pumps. Our vision is that our project will enable industry to develop and introduce high-efficiency industrial heat pumps and contribute to the transition to a sustainable industry.
-