Project

Back to overview

Pushing All Solid-State Batteries to Their Full Potential - Interface Engineering Guided by Advanced Diagnostics for High Performance Scalable Batteries

Applicant Coskun Ali
Number 202296
Funding scheme Sinergia
Research institution Département de Chimie Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Interdisciplinary
Start/End 01.01.2022 - 31.12.2025
Approved amount 2'795'043.00
Show all

All Disciplines (4)

Discipline
Interdisciplinary
Organic Chemistry
Physical Chemistry
Material Sciences

Keywords (5)

Li-metal anode; Energy Storage ; Li-ion battery; Surface Functionalization; Polymeric Binders

Lay Summary (German)

Lead
The ever-growing demand for portable electronics, electric vehicles and grid-scale energy storage systems necessitates the development of high energy density, safe, low-cost energy storage systems. This project aims to deliver an impact and basis in all solid state battery research by demonstrating and proving that ASSBs are viable technology once the interfacial phenomena and their ageing mechanisms are deeply understood, and corresponding solutions are identified. Batteries will be a major source of jobs, economic growth and investment for the Switzerland and are also expected to play a crucial role in the transition towards a green economy.
Lay summary

Die ständig steigende Nachfrage nach mobilen elektronischen Geräten, elektrischen Fahrzeugen und hochkapazitiven Energiespeichern verlangt die Entwicklung von günstigen und sicheren Energiespeichersystemen mit hoher Energiedichte. Innerhalb der Batterie-Community sieht man Feststoffbatterien (ASSBs, aus dem Englischen „all-solid-state batteries“) als besonders geeignet für diese Anforderungen, da sie, verglichen zu herkömmlichen Lithium-Ionen Batterien, sicherer sind und durch die Verwendung von metallischen Anoden höhere Energiedichten ermöglichen.

Obwohl ASSBs zahlreiche Vorteile besitzen, steht ihre Entwicklung immer noch in der Forschungsphase. Herausforderungen, die die praktische Anwendung dieser Technologie noch verhindern, sind vor allem die vergleichsweise geringe Leistung, sowie die mangelhafte Langzeit-Wiederaufladbarkeit von ASSBs. Aufgrund der hochkomplexen und interdisziplinären Natur der Feststoffbatterie-Forschung, haben sich Forschungsgruppen mit unterschiedlichen Expertisen im Bereich der Batterieentwicklung von der Universität Fribourg, dem PSI, der EPFL und der National-Universität Seoul für ein gemeinsames Projekt zusammengeschlossen, dessen Ziel es ist eine wissenschaftliche Grundlage für Forschung in diesem Bereich zu schaffen, sowie zu zeigen, dass ASSBs eine nachhaltige Energiespeicher-Technologie darstellen. Dazu ist es notwendig relevante Phänomene, die sich an den Grenzflächen der Bauteile abspielen, sowie deren Alterungsprozesse eingehend zu untersuchen und entsprechende Lösungen für die auftretenden Probleme zu finden.

Die Batterie-Industrie wird zukünftig große Relevanz für Wirtschaftswachstum, Investment und Schaffung von Arbeitsplätzen in der Schweiz haben und ein entscheidender Faktor für den Übergang zu einer ökologisch nachhaltigen Volkswirtschaft sein.

Direct link to Lay Summary Last update: 12.07.2021

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
188572 Designing Functional Polymeric Materials for High Capacity Lithium-Sulfur Batteries 01.02.2020 Project funding (Div. I-III)
182892 NCCR MARVEL: Materials’ Revolution: Computational Design and Discovery of Novel Materials (phase II) 01.05.2018 National Centres of Competence in Research (NCCRs)
182057 Machine Learning for Electronic Properties 01.04.2019 Project funding (Div. I-III)

Abstract

All-solid-state batteries (ASSBs) are receiving considerable attention from the battery community mainly due to their capability of drastically enhancing the safety and increasing the energy density by enabling the use of metallic anodes compared to the existing lithium-ion batteries (LIBs). Despite these conspicuous advantages, ASSBs are still at research stage, leaving a substantial gap before practical adoption. Main challenge with ASSBs lies in their inferior rate performance and long-term cyclability, both primarily originating from the destabilization of electrode-electrolyte interface and the creation and propagation of mechanical stress. Energy density should also be carefully evaluated, and a well-known approach to compensate for it, is to use lithium (Li) metal anodes. Whereas individual state-of-the-art solid electrolytes offer high ionic conductivities enough for cell operation, once assembled, the cell performance is mostly not as good as expected, indicating the importance and challenge of particle-to-particle interface. Once electrolyte and active material particles are in contact, (electro-) chemical reactions take place leading to a space-charge effect build a lithium ion depleted layer, imposing a barrier for Li ion transport. The complexity of the problem necessitates an interdisciplinary research approach to tackle inferior cell performance of ASSBs and establish a fundamental understanding on the interface and morphology problems. In this direction, here, we propose a systematic strategy targeting the interface engineering of sulfide-based solid electrolytes (SEs), high voltage Ni-rich layered cathode active materials (CAMs) and Li-metal anodes. The choice of sulfide SEs arise from the consensus that sulfide SEs are suitable and a unique material for good interface contact due to their ductile mechanical properties and ability to be cold pressed. Our synergistic effort involves in-depth understanding of interfacial reactions guided by advanced diagnostics and machine-learning driven atomic scale modeling to achieve both thermodynamic and chemical stability through (1) Coskun group@UniFr, AC: the design and synthesis of elastic polymeric binders and surface stabilization of sulfide electrolytes and membrane coating on the Li-metal surface. (2) El Kazzi group@PSI, MEK: Surface and bulk operando analysis and characterization of electrochemical cells and the identification of interfacial reaction byproducts and intermediates (3) Ceriotti group@EPFL, MC: Structure, stability and reactivity of SE from machine-learning accelerated molecular simulations and (4) Choi group@SNU, JWC: the advanced electrochemical characterization of battery electrodes, optimization of cell conditions and testing battery electrodes at industrially relevant cell conditions. Accordingly, the specific five work packages (WPs) for the project involve (1) the development of solution-processed electrode coating using elastic binders and stabilization of SEs (AC) guided by machine learning (MC), (2) optimization of Ni-rich layered cathode active materials (JWC & MEK), (3) protection and interface optimization of Li-free anodes (AC, JWC), (4) characterization of electrodes using operando analytic tools (MEK, MC) and finally (5) demonstration of 2 Ah prototype cell (JWC, AC, MEK). Critically, the development of individual electrode components, machine learning and operando analyses will be intimately linked to identify interfacial issues and the solutions. In particular, the design for polymeric binders and electrolyte themselves as well as their interaction with active electrode materials will enable breakthroughs for the development of high performance ASSBs comparable to that of current LIBs.
-