Project

Back to overview

FLARE 2021-2022: Operation and upgrade of the LHCb experiment

English title FLARE 2021-2022: Operation and upgrade of the LHCb experiment
Applicant Serra Nicola
Number 201480
Funding scheme FLARE
Research institution Physik-Institut Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Particle Physics
Start/End 01.04.2021 - 31.03.2023
Approved amount 1'803'039.00
Show all

Keywords (12)

Heavy flavour; CKM matrix; b and c hadrons; LHCb; CP violation; LHC; Detector upgrade; Silicon strip detectors; Silicon photo-multipliers; Production in forward region; New Physics searches; Scintillating fibres

Lay Summary (German)

Lead
Das Standardmodell der Teilchenphysik beschreibt die Welt der fundamentalen Wechselwirkungen mit großer Präzision. Der Erfolg des Standardmodells gipfelte in der Entdeckung des Higgs-Bosons im Jahr 2012, dem letzten der vom Modell vorhergesagten Elementarteilchen.Trotzdem gilt das Standardmodell als unvollständige Theorie, da es Beobachtungen wie die Existenz von dunkler Materie oder die Materie-Antimaterie-Asymmetrie im Universum nicht erklärt.Der Large Hadron Collider (LHC) am CERN in Genf hat das Hauptziel, Beweise für Physik jenseits des Standardmodells zu finden.
Lay summary

Obwohl die Existenz von Physik jenseits des Standardmodells noch nicht nachgewiesen wurde, hat das LHCb-Experiment mehrere Anomalien beobachtet, die zwar noch bestätigt werden müssen, aber die ersten Risse im Modell sein könnten.

LHCb ist eine internationale Kollaboration von mehr als tausend Physikern. Die an LHCb beteiligten Schweizer Gruppen gehören zur EPFL (Prof. O. Schneider und Prof. L. Shchutska) und zur Universität Zürich (Prof. N. Serra). Seit 2010 hat das LHCb-Experiment eine Fülle von neuen Beobachtungen und Messungen hervorgebracht, die in mehr als 500 wissenschaftlichen Artikeln veröffentlicht wurden. Über einige von ihnen wurde in den Medien ausführlich berichtet.

LHCb wird derzeit verbessert und aufgerüstet, und Schweizer Gruppen haben die Verantwortung für die Entwicklung, den Bau und den Betrieb eines Teils der experimentellen Apparatur übernommen, darunter Szintillationsfaserdetektoren und neuartige Silizium Detektoren.

 

Der FLARE-Zuschuss ermöglicht es den Gruppen der EPFL und der Universität Zürich, zwei technische Stellen für die Wartung und Entwicklung der Geräte unter ihrer Verantwortung zu finanzieren sowie in den Bau neuer Elemente zur Verbesserung des Experiments zu investieren.

 
Direct link to Lay Summary Last update: 20.04.2021

Lay Summary (French)

Lead
Le modèle standard de la physique des particules décrit avec une grande précision le monde des interactions fondamentales. Le succès du modèle standard a culminé avec la découverte du boson de Higgs en 2012, la dernière des particules fondamentales prédites par le modèle. Malgré cela, le modèle standard est considéré comme une théorie incomplète, car il n'explique pas des observations telles que l'existence de la matière noire ou l'asymétrie matière-antimatière dans l'Univers. Le Grand collisionneur de hadrons (LHC) du CERN, à Genève, a pour objectif principal de trouver des preuves microscopiques de la présence de la physique au-delà du modèle standard.
Lay summary

Bien que l'existence d'une physique au-delà du modèle standard n'ait pas encore été découverte, l'expérience LHCb a observé plusieurs anomalies, qui doivent être confirmées, mais qui pourraient être les premières fissures du modèle. 

LHCb est une collaboration internationale d'environ un millier de physiciens. Les groupes suisses impliqués dans LHCb appartiennent à l'EPFL (Prof. O. Schneider et Prof. L. Shchutska) et à l'Université de Zurich (Prof. N. Serra). Depuis 2010, l'expérience LHCb a produit une multitude de nouvelles observations et mesures, publiées dans plus de 500 articles scientifiques. Certaines d'entre elles ont été largement rapportées dans les médias. 

LHCb est actuellement en cours d'amélioration et de mise à niveau, et des groupes suisses ont pris la responsabilité du développement, de la construction et de l'exploitation d'une partie du dispositif expérimental, notamment les détecteurs à fibres scintillantes et les détecteurs à microtraces en silicium. 


La subvention FLARE permet aux groupes de l'EPFL et de l'Université de Zurich de financer deux postes techniques pour la maintenance et le développement des équipements sous leur responsabilité, ainsi que d'investir dans la construction de nouveaux éléments pour améliorer l'expérience.

 
Direct link to Lay Summary Last update: 20.04.2021

Lay Summary (Italian)

Lead
Il Modello Standard della fisica delle particelle descrive con grande precisione il mondo delle interazioni fondamentali. Il successo del Modello Standard è culminato nella scoperta del bosone di Higgs nel 2012, l’ultima delle particelle fondamentali predette dal modello. Nonostante questo, il Modello Standard è considerato una teoria incompleta, in quanto non spiega osservazioni quali l’esistenza della materia oscura o l’asimmetria materia-antimateria nell’Universo. Il Large Hadron Collider (LHC) al CERN di Ginevra, ha lo scopo principale di trovare evidenze microscopiche di fisica oltre il Modello Standard.
Lay summary

Malgrado non si sia ancora scoperta l’esistenza di fisica oltre il Modello Standard, l’esperimento LHCb ha osservato varie anomalie, che necessitano conferma, ma che potrebbero essere le prime crepe nel modello. 

i queste hanno avuto grande eco sui media. 

LHCb sta attualmente venendo migliorato e aggiornato, ed i gruppi svizzeri hanno assunto responsabilità nello sviluppo, costruzione e funzionamento di parte dell’apparato sperimentale, compresi rivelatori a fibre scintillanti e rivelatori di silicio. 


La sovvenzione FLARE permette ai gruppi dell'EPFL e dell'Università di Zurigo di finanziare due posizioni tecniche per la manutenzione e lo sviluppo delle attrezzature sotto la loro responsabilità, nonché di investire nella costruzione di nuovi elementi per migliorare l'esperimento.LHCb è una collaborazione internazionale di circa un migliaio di fisici. I gruppi Svizzeri coinvolti in LHCb appartengono all’EPFL (Prof. O. Schneider and Prof. L. Shchutska) e all’Università di Zurigo (Prof. N. Serra). L’esperimento LHCb, dal 2010 ha prodotto una ricchezza di nuove osservazioni e misure, pubblicate in più di 500 articoli scientifici. Alcune delle quali hanno avuto grande eco nei media. 

LHCb è attualmente in fase di miglioramento e aggiornamento, ed i gruppi svizzeri si sono assunti la responsabilità dello sviluppo, della costruzione e del funzionamento di parte dell’apparato sperimentale,  in particlare rivelatori a fibre scintillanti e i rivelatori di silicio.

 
Direct link to Lay Summary Last update: 20.04.2021

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
178969 LHCb experiment at CERN: Detector Upgrades and Analyses with Electroweak Bosons 01.06.2018 Project funding
185050 High Precision Flavour Physics at LHCb 01.04.2019 Project funding
204238 Understanding the Flavour Anomalies 01.10.2021 Project funding
188553 Multilepton B decays at LHCb 01.01.2020 Project funding
173580 FLARE 2017-2020: Operation and upgrade of the LHCb experiment 01.04.2017 FLARE
207739 Exploring very rare phenomena with LHCb and SND@LHC 01.04.2022 Project funding

Abstract

The LHCb experiment is designed to exploit the abundant heavy quark production at CERN's Large Hadron Collider (LHC). The primary physics aims are to characterize in detail the flavour structure in the quark sector, and look for New Physics effects in the decay of charm and bottom hadrons.During LHC Run 1 (Nov 2009 - Feb 2013) and Run 2 (Jun 2015 - Dec 2018), LHCb has recorded 3.2/fb and 5.9/fb of pp collisions at centre-of-mass energies of 7-8 TeV and 13 TeV, respectively. With these data the LHCb physics programme is being fully deployed, with over 540 physics papers submitted to peer-reviewed journals. While some intriguing ``flavour anomalies'' have been seen, which call for larger statistics, all other results so far are consistent with the expectations of the Standard Model of particle physics. Physics data-taking with improved efficiency will restart in Spring 2022 with a new upgraded LHCb experiment, which is expected to collect at least 10/fb per year during Run 3 (2022-2024) and Run 4 (2027-2030). For the more distant future, the collaboration has expressed its intention to further upgrade the detector (Upgrade II), in order to exploit fully the flavour physics opportunities offered throughout the high-luminosity phase of the LHC.We have played important leadership roles in LHCb since the beginning of the project in 1995, have taken important responsibilities for the initial and the upgraded detector, and are heavily involved in data analysis. We are a major player in the construction of the new tracking system, composed of the Upstream Tracker (silicon strips) before the dipole magnet and the SciFi Tracker (scintillating fibres read out with silicon photomultipliers) after the magnet, which we are now installing in view of Run 3. Also we are among the proponents and main contributors to the design and construction of the new luminosity measurement and monitoring detector PLUME at LHCb.Our objectives for the coming two-year funding period 2021-2022 are the following:- Complete the construction, installation and commissioning of the detector systems under our responsibility and operate them at their best performance during the first part of Run 3;- Analyze the existing and forthcoming data with main emphasis on searches for New Physics effects, and disseminate the physics results (in publications and conference presentations);- Develop new parts and prepare for the consolidation of the SciFi Tracker for Run 4;- Initiate R&D on both the scintillating-fibre and silicon-pixel technologies, including construction of prototypes and studies of novel track reconstruction algorithms, in view of Upgrade II.To meet these goals we ask FLARE funding for two technical positions on the tracker projects, investment in the Upstream Tracker, R&D and investment in the SciFi Tracker consolidation, R&D towards Upgrade II of the tracking stations, and local computing for data analysis and tracking studies.This FLARE proposal is the continuation of our current FLARE grant and is mirrored by our SNSF project grants, which support our involvement in the LHCb project (personpower and travel expenses), in particular for the exploitation of the physics data. Additional funding for Maintenance and Operations (M&O) costs is asked for in a separate FLARE request common to all LHC experiments with Swiss participation.
-