Project

Back to overview

A “Closer Look” at Open-Shell Nanographenes Through Bond and Space

English title A “Closer Look” at Open-Shell Nanographenes Through Bond and Space
Applicant Juricek Michal
Number 198900
Funding scheme SNSF Professorships
Research institution Institut für Chemie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Organic Chemistry
Start/End 01.04.2021 - 31.03.2023
Approved amount 597'624.00
Show all

Keywords (10)

Open-shell nanographenes; Redox-active systems; Spintronics; Spin-delocalized hydrocarbons; Magnetic materials; Spin coupling; Self-assembly; Semiconductors; Pancake bond; Supramolecular complex

Lay Summary (German)

Lead
Der Spintransport ist ein wesentliches Merkmal von informationsverarbeitenden Geräten. Organische Moleküle, die ungepaarte Elektronen enthalten und dadurch ein magnetisches Moment besitzen, können Materialien liefern, die die Anforderungen solcher Geräte erfüllen und billiger, leichter und flexibler als Metalle sind. Die zentrale Herausforderung auf diesem Gebiet ist die Kontrolle der Spinwechselwirkungen in drei Dimensionen in einem organischen Bulk-Material.
Lay summary
Dieser Antrag adressiert diese Herausforderung, indem er kohlenstoffbasierte Systeme entwirft und untersucht, in denen Spinwechselwirkungen auf präzise Weise kontrolliert werden können, um unser Verständnis der multiplen Spinwechselwirkungen und des daraus resultierenden Magnetismus von Molekülen und Materialien zu verbessern. Ziel ist es, molekulare Modellsysteme zu konstruieren, bei denen die Spinwechselwirkungen einzeln – entweder durch die Bindung oder den Raum - untersucht werden können, sowie selbstorganisierte Systeme, bei denen Mehrfach-Spinwechselwirkungen in einem dreidimensionalen Bulk-Material untersucht werden können. Durch die Entwicklung von Molekülen und Materialien, die auf organischen Radikalen basieren, wird dieses Projekt unser Verständnis von Spinwechselwirkungen verbessern und die Entwicklung von Materialien der nächsten Generation für die Spintronik unterstützen.
Direct link to Lay Summary Last update: 17.12.2020

Lay Summary (English)

Lead
Spin transport is as an essential feature of information processing devices. Organic molecules that contain unpaired electrons, and thereby possess a magnetic moment, can deliver materials that fulfill the requirements of such devices and are cheaper, lighter, and more flexible than metals. The central challenge in this field is the control of spin interactions in three dimensions in a bulk organic material.
Lay summary
This proposal addresses this challenge by designing and investigating carbon-based systems, where spin interactions can be controlled in a precise manner, to improve our understanding of multiple spin interactions and resulting magnetism of molecules and materials. The aim is to construct molecular model systems, where spin interactions can be studied individually ? either through bond or space ? and self-assembled systems, where multiple spin interactions can be studied in a three-dimensional bulk material. By developing molecules and materials based on organic radicals, this project will improve our understanding of spin interactions and aid the development of the next-generation materials for spintronics.
Direct link to Lay Summary Last update: 17.12.2020

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
170534 Control of Spin Interactions in Helical Systems 01.04.2017 SNSF Professorships
205987 Bottom-up design and exploration of p-electron quantum magnetism 01.04.2022 Sinergia

Abstract

Spin transport is as an essential feature of information processing devices. Organic molecules that contain unpaired electrons, and thereby possess a magnetic moment, can deliver materials that fulfill the requirements of such devices and are cheaper, lighter, and more flexible than metals. The central challenge in this field is the control of spin interactions in three dimensions in a bulk organic material. This proposal addresses this challenge by designing and investigating carbon-based systems, where spin interactions can be controlled in a precise manner, to improve our understanding of multiple spin interactions and resulting magnetism of molecules and materials. The aim is to construct molecular model systems, where spin interactions can be studied individually ? either through bond or space ? and self-assembled systems, where multiple spin interactions can be studied in a three-dimensional bulk material. The through-bond spin interactions will be investigated in a series of nanographene diradicals to quantify the effect of topology and conjugation length on the strength of the spin coupling. The through-space spin interactions will be studied in open-shell nanographene p-dimers encapsulated in a cavity of a supramolecular host that will provide control over the distance and relative orientation of the spin monomers. Three-dimensional materials will be obtained through self-assembly, by means of covalent-like intermolecular interactions, and allow to investigate spin interactions across the aggregates in the bulk material. By developing molecules and materials based on organic radicals, this project will improve our understanding of spin interactions and aid the development of the next-generation materials for spintronics.
-