Project

Back to overview

600 MHz Nuclear Magnetic Resonance Spectrometer

English title 600 MHz Nuclear Magnetic Resonance Spectrometer
Applicant Coskun Ali
Number 198110
Funding scheme R'EQUIP
Research institution Département de Chimie Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Organic Chemistry
Start/End 01.03.2021 - 28.02.2022
Approved amount 449'640.00
Show all

All Disciplines (2)

Discipline
Organic Chemistry
Material Sciences

Keywords (8)

Organic Chemistry; Supramolecular Chemistry; Bioorganic Chemistry; Li-ion Battery; Nucler Magnetic Resonance; Solid State Chemistry; Porous Materials; High Resolution

Lay Summary (German)

Lead
Das über das R’Equip Projekt erhaltene NMR-Gerät (600 MHz mit Cryo-Probenkopf) wird die Charakterisierung von Verbindungen, Polymeren und poröse Materialien auf einem bis dahin nicht dagewesenen Level erlauben.
Lay summary

Am Department für Chemie der Universität Fribourg werden täglich neue Verbindungen, Polymere und poröse Materialien synthetisiert, welche charakterisiert werden müssen. Eine wichtige Methode zur Analyse neuer Verbindungen in flüssiger Form und neuer Materialien in fester Form stellt die Kernspinresonanz (engl: nuclear magnetic resonance NMR) dar, welche es erlaubt ein Verständnis darüber zu erhalten, wie Atome aneinandergebunden sind. Dieses Verständnis ermöglicht es die Eigenschaften von Verbindungen und Materialien zu erklären.

In der Arbeitsgruppe von Prof. Ali Coskun, welcher seit 2017 an der Universität Fribourg ist, wird an porösen Materialien mit Poren im Nanobereich gearbeitet. Diese hochporösen Materialien eignen sich besonders für Anwendungen wie die Aufnahme von Kohlenstoffdioxid aus der Luft, für Li-Ionen Batterien und vieles mehr. Das über das R’Equip Projekt erhaltene NMR-Gerät wird die Charakterisierung von Feststoffen auf einem bis dahin nicht dagewesenen Level erlauben.

Die Bochet Gruppe wird den neuen cryo-Probenkopf des Systems nutzen, um komplexe organische Moleküle aus Pflanzenextrakten zu analysieren um damit deren medizinische Eigenschaften zu ergründen.

Die Kilbinger Gruppe wird den neuen Probenkopf zur Analyse komplexer helixförmiger biologisch inspirierter Polymere nutzen.

Die Fink Gruppe wird das System zur Analyse der Oberflächenstruktur von Gold Nanopartikel für biologische Anwendungen nutzen.

Die Katayev Gruppe, Eccellenza Professor, wir die hochauflösende Feststoffsonde zur Analyse von Reagenzien nutzen, welche die Übertragung funktioneller Gruppen in der Festphase erlauben.

Die Salentinig Gruppe, mit ihrer Expertise in der Lebensmittelchemie, wird die Verdauung von Acyl-Glycerolen und Phospholipiden über in-situ NMR testen. Zudem kann die in-situ NMR Analyse zur Aufklärung der Nanostruktur von Proteinen genutzt werden, welche nützliche Informationen über die Verdauungswege und Interaktionen zwischen Molekülen liefert.

Das neue System wird all diese Analysen ermöglichen. Zudem wird das Gerät von weiteren Arbeitsgruppen an der Universität für Angewandte Wissenschaften in Fribourg genutzt werden und für weitere Gruppen in der Schweiz zugänglich sein.

Direct link to Lay Summary Last update: 11.01.2021

Responsible applicant and co-applicants

Project partner

Knowledge transfer events



Self-organised

Title Date Place
Inaguration of the instrument and user training 01.03.2022 Fribourg, Switzerland

Communication with the public

Communication Title Media Place Year
Print (books, brochures, leaflets) Department activity report International German-speaking Switzerland Western Switzerland 2022
Other activities Department Website German-speaking Switzerland International Italian-speaking Switzerland Western Switzerland 2022

Associated projects

Number Title Start Funding scheme
186251 Brushing Bacteria: Polymer Brush Coatings for Bacteria Free Drinking Water 01.09.2020 Resource not found: '73db8922-9c9a-4c27-a5dd-3e7f63f62a65'
182059 Synthesis of precision polymers 01.10.2019 Project funding (Div. I-III)
186964 Development of a New Generation of Easy Accessible and Stable Reagents for Functional Group Transfer Reactions 01.01.2021 Eccellenza
184635 Nanoparticle Characterization 01.12.2019 Project funding (Div. I-III)
192051 From Structure to Function: Supramolecular Design of Functional Food Materials 01.10.2020 Project funding (Div. I-III)
172619 Stimuli-Responsive Supramolecular Polymers 01.04.2017 Project funding (Div. I-III)
185084 Photons in organic synthesis 01.06.2019 Project funding (Div. I-III)
175947 Catalytic Polymeric Membranes for the Simultaneous Capture and Conversion of CO2 from Various Emission Sources 01.12.2017 Project funding (Div. I-III)
188572 Designing Functional Polymeric Materials for High Capacity Lithium-Sulfur Batteries 01.02.2020 Project funding (Div. I-III)

Abstract

The specific aim of this proposal is to obtain funding for a 600 MHz Nuclear Magnetic Resonance (NMR) Spectrometer. The proposed AVNEO console and accessories, with 600 MHz superconducting magnet, has the capability for conducting state-of-the-art NMR experiments on liquid and solid-state samples. As for the liquid samples, the system will be equipped with prodigy N2-cooled cryoprobe to provide the researchers with very high-resolution NMR data, which was previously inaccessible. Moreover, as a solid probe, the system will be equipped with a “very fast” 1.3 mm solid-probe capable of spinning up to 67 KHz, which will provide extremely high resolution for the analysis of solid samples. The proposed 600 MHz NMR spectrometer with accessories will be equipped for conducting modern, high-resolution NMR experiments for the characterization of molecules and materials by researchers in the various subdisciplines of chemistry on a routine basis. The justification for this application rests first on the need for modern NMR instrumentation to meet the increased demand for the high-resolution NMR analysis in our department as well as in the university. As detailed in the research plan section, nine faculty will be the primary users on the 600 MHz spectrometer. Three members (Coskun, Fromm, Zobi) working on solid-state organic and inorganic materials, require modern 600 MHz capability to perform high-resolution solid-state NMR experiments. Two-dimensional NMR experiments for structural characterization for porous materials, 15N NMR for nitrogen speciation of porous materials for applications such as CO2 capture and conversion, 6Li and 7Li NMR for understanding the Li-ion transport in electrode materials and polymer electrolytes for Li-ion batteries. Weder group will develop a set-up for in-situ NMR analysis of photo-responsive supramolecular assemblies, which require the new 600 MHz NMR instrument. Bochet group will use the new NMR set-up equipped with cryoprobe to analyze complex organic molecules isolated from plant extracts with medicinal properties (generally isolated in few mg scale). In addition, isotopic labelling experiments to understand reaction mechanisms will be also performed. Kilbinger group will benefit from the cryoprobe extensively to perform 15N NMR experiments to prove the helical nature of the polymers. Moreover, increased 31P-NMR sensitivity through new cryoprobe will also allow for a more precise analysis of the new selective phosphorous reagents for the living polymerization of amino acids. Fink group will use high resolution NMR analysis extensively to determine free/surface bound PEG chains on the Au nanoparticle surface and subsequently investigate the conformation of bovine serum albumin proteins interacting with these particles, both projects will take advantage of the increased sensitivity of cryoprobe and 600 MHz NMR. Katayev group, Eccellenza Professor who will join the chemistry department in January 2021, will extensively use the high-resolution solid-state probe for the characterization of solid-phase functional group transfer reagents. Lastly, Salentinig group, with a strong expertise in food chemistry, will probe the digestion of acyl-glycerols and phospholipids via in-situ NMR. In addition, the in-situ NMR analysis of dynamic self-assembly of lipid-peptide or protein nanostructures will provide valuable information on the digestion pathways and interactions between molecules. In this context, the new 600 MHz NMR instrument will open up new research areas that were totally impossible so far, in particular state-of-the-art multidimensional NMR experiments as well as solid-state investigations. Thus, it is necessary to obtain 600 MHz instrument to meet the research and NMR time needs of the faculty. The present proposal is submitted to remedy aforementioned fundamental problems
-