Project

Back to overview

Cascading impacts of compound climate extremes in Switzerland

Applicant Salzmann Nadine
Number 198086
Funding scheme COST (European Cooperation in Science and Technology)
Research institution Unité de Géographie Département des Géosciences Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Other disciplines of Environmental Sciences
Start/End 01.03.2021 - 29.02.2024
Approved amount 234'245.00
Show all

Keywords (6)

managing risks; climate extremes; compound risks; adaptation; cascading processes; impacts

Lay Summary (German)

Lead
Mit der Klimaänderung ist auch von einer Zunahme der Häufigkeit und Intensität von klimatischen Extremen auszugehen, mit oft schwerwiegenden Auswirkungen auf die Umwelt und Gesellschaft. Kumulieren und kombinieren sich klimatische Extremereignisse und/oder pflanzen sich Auswirkungen kaskadenmässig fort, entstehen Risiken von vielleicht unbekanntem Ausmass mit schwerwiegenden, langfristigen Folgen für die Umwelt und Gesellschaft. Jüngste Katastrophen und Krisen, sowohl klimatisch (z. B. die Buschbrände 2019 in Australien) als auch nicht-klimatisch bedingt (z. B. die Covid-19-Krise), liefern wichtige Hinweise auf Skaleneffekte und unterstreichen sowohl die Schwierigkeit als auch die Wichtigkeit, kaskadierende und miteinander verknüpfte Risiken zu antizipieren und abzumildern. Die Wissenschaft und Gesellschaft ist herausgefordert, Methoden und Konzepte zu entwickeln um solche 'Grossrisiken' frühzeitig zu erkennen um Handlungsoptionen zu entwickeln.
Lay summary

Dieses Projekt zielt darauf ab relevante Methoden für die Wissenschaft und die Praxis zu entwickeln, um solche Risiken besser zu verstehen und die negative Auswirkung zu limitieren. Konkret entwickeln wir eine Modellarchitektur zur Analyse von kaskadierenden Risiken ausgehend von kombinierte Klimaextremen unter Verwendung (i) eines Auswirkungsmodell-Szenario-Ansatzes und (ii) eines Entscheidungsunterstützungs-Ansatzes unter großer Unsicherheit. Anschliessend implementieren und vergleichen wir beide Ansätze in zwei ausgewählten, repräsentativen Fallstudien in der Schweiz. Aufgrund unserer neuen Erkenntnisse entwickeln wir einen Leitfaden für die wissenschaftliche Anwendung und politische Unterstützung für die Analyse und den Umgang kombinierter, kaskadierender Risiken. 

Die praktische Relevanz und Auswirkung des Projekts wird durch die enge Zusammenarbeit und den Austausch mit eidgenössischen und kantonalen Behörden und Experten erhöht.

Direct link to Lay Summary Last update: 09.03.2021

Responsible applicant and co-applicants

Employees

Project partner

Associated projects

Number Title Start Funding scheme
166272 Integrated Water Resources Modeling: Future Risks and Adaptation Strategies - a case study in the Andes of Peru 01.11.2016 Project funding

Abstract

In a warming world, as confirmed by past observations and future projections, many climatic extremes increase in frequency and/or magnitude. Their impacts on exposed and vulnerable parts of the environment and the society are often severe, and scientific information to reduce and manage associated risks is therefore essential. If extreme climate events compound and trigger subsequent cascading impacts and risks, they can cause massive damages and losses, or even destabilize societies and have severe long-term impacts for environment and society. Recent disasters and crises, both climatically related (e.g. 2019 bush-fires in Australia) and non-climatically related (e.g. the Covid-19 crisis), provide important evidence at scale and underline both the difficulty and importance to anticipate and mitigate cascading and interconnected risks. Science has a fundamental role in developing methods, providing evidence and improving understanding to prevent and cope with such complex risks. However, the research fields of compound climatic events and cascading risks are still young and emerging; important gaps prevail and include a lack of common and clear terminology, shared methods, including with respect to coupled climate-impact model architectures; or a need for extending currently adopted approaches, e.g. towards decision support methodologies. There is also a lack of systematic evaluation of different approaches, and a need for more applications to real-world cases and in general for improving the understanding of processes of compound and cascading impacts in natural and human systems. Furthermore, current policies insufficiently consider these types of risks and a strengthened science-policy exchange and collaboration is therefore crucial.This project aims at addressing several of the aforementioned gaps and needs. The objectives are (1) to develop a model architecture to analyze cascading risks from compound climate extremes using (I) an impact-model scenario approach, and (II) a decision support under deep uncertainty approach; (2) to implement both approaches for two selected, representative case studies in Switzerland and perform an unprecedented comparative analysis of the two approaches; and (3) to develop a guidance for scientific application and policy support with a perspective to reduce related adverse impacts and risks for environment and society. The case studies consist of an alpine flood and landslide case (Guttannen-Grimsel) and a drought and protection forest case (Val Mesolcina). Approach I builds on established methods of coupled climate-impact models and extends them to better accommodate the nature of compound climatic events and cascading impacts and risks. Impact processes that will be coupled with climate model data include permafrost, glacier and snow, rockfall, floods and landslides and avalanches, sediment flux, slope stability or forest ecology and fires. Approach II starts the analysis at the level of policy decisions with regards to the vulnerable elements of a system against which climatic stress and risk thresholds are evaluated. We employ exploratory modeling as a new innovative approach to compound and cascading risks. The project will generate novel insights concerning the differential results of the two approaches, including in terms of implications for decision-makers. The practical relevance and impact of the project are enhanced by close collaboration and exchange with Swiss federal and cantonal authorities and experts, and a guidance document for scientific practice and decision support.This project is embedded in the COST Action DAMOCLES and will make contributions to several Work Packages, in particular by adding and sharing new models, datasets and evaluation methods to the DAMOCLES portfolio. The feasibility of the project is ensured by high commitment of the project team (2 applicants, 2 project partners and requested funds for a postdoc), important synergies with an ongoing project in collaboration with the Swiss Federal Office for the Enviroment (FOEN) as well as existing datasets in the study areas and established and widely tested process models.
-