Project

Back to overview

Synthesis and functionalities of nanoscale magnonic superstructures

English title Synthesis and functionalities of nanoscale magnonic superstructures
Applicant Grundler Dirk
Number 197360
Funding scheme Project funding
Research institution Laboratoire des matériaux magnétiques nanostructurés et magnoniques EPFL - STI - IMX - LMGN
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.06.2021 - 31.05.2025
Approved amount 888'482.00
Show all

All Disciplines (2)

Discipline
Condensed Matter Physics
Material Sciences

Keywords (11)

ferromagnetic materials; microwave spectroscopy; magnetization dynamics; spin waves; superparamagnetic ; magnonics; two-photon lithography; DNA nanotechnology; spintronics; DNA origami; atomic layer deposition

Lay Summary (German)

Lead
Die moderne Informationstechnologie und mobile Kommunikation basieren auf elektromagnetischen Wellen, die sich zunächst im Frequenzbereich von etwa MHz zu GHz befanden und nun zunehmend zu höheren Frequenzen streben, bis in den sub-THz-Frequenzbereich hinein. In dem Frequenzbereich von MHz bis THz besitzen magnetisch geordnete Materialien kollektive Spinanregungen (Magnonen), an die elektromagnetische Wellen ankoppeln und sich dann innerhalb der Materialien ausbreiten können. Dabei werden insbesondere Wellenlängen von der cm und mm Längenskala auf bis hinunter zu etwa 10 nm verkürzt. Um derartige Wellen zukünftig technisch zu nutzen, müssen Fragestellungen in der Materialwissenschaft, der Nanotechnologie und Physik beantwortet werden, denen wir in dem Projekt nachgehen.
Lay summary
Inhalt und Ziel des Forschungsprojekts
Das übergeordnete Ziel unseres Forschungsprojekt ist die Erzeugung und Untersuchung von extrem kurzwelligen Spinanregungen in planar und dreidimensional angeordneten ferro- und ferrimagnetischen Nanostrukturen. Wir wollen dabei in einen Wellenlängenbereich unter 50 nm vorstossen, der bisher routinemässig nicht im Labormasstab untersucht werden konnte. Dazu optimieren wir Hybridmatieralien aus DNA und magnetischen Nanostrukturen und verbessern die formerhaltende Beschichtung von dreidimensionalen Nanostrukturgittern mit ferromagnetischen Dünnfilmen. Die Ausbreitungseigenschaften von extrem kurzwelligen Spinanregungen ist in einzelnen Nanostrukturen bisher nicht experimentell untersucht. Zudem studieren wir nichtlineare Prozesse, um die gezielte Veränderung des magnetischen Zustands einer Nanostruktur mit Hilfe von kurzwelligen Spinanregungen zu erreichen.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts
Unsere Arbeiten werden neues Wissen zu kurzwelligen Spinanregungen liefern, und damit nachweisen, inwieweit die vorausgesagten Vorteile einer auf Magnonen basierten Informationstechnologie auf der Nanoskala realisiert werden können. Ein Vorteil wäre zum Beispiel, dass das Prozessor-Design nicht mehr der von-Neumann-Architektur folgen müsste. Damit könnten effizientere Rechnerstrukturen realisiert werden, die energieärmer und kompakter, und damit resourceneffizeinter sowie nachhaltiger betrieben werden könnten.  
Direct link to Lay Summary Last update: 25.02.2021

Responsible applicant and co-applicants

Employees

Publications

Publication
Advances in Magnetics Roadmap on Spin-Wave Computing
Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Akerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Grundler D., et al. (2022), Advances in Magnetics Roadmap on Spin-Wave Computing, in IEEE Transactions on Magnetics, 58(6), 1-72.
Ni 80 Fe 20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition
Giordano Maria Carmen, Escobar Steinvall Simon, Watanabe Sho, Fontcuberta i Morral Anna, Grundler Dirk (2021), Ni 80 Fe 20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition, in Nanoscale, 1.

Datasets

Ni 80 Fe 20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition

Author Giordano, Maria Carmen; Escobar Steinvall, Simon; Watanabe, Sho; Fontcuberta i Morral, Anna; Grundler, Dirk
Publication date 29.07.2021
Persistent Identifier (PID) 10.1039/D1NR02291A
Repository zenodo
Abstract
Raw data associated to the manuscript "Ni80Fe20 nanotubes with optimized spintronic functionalities prepared by atomic layer deposition". Journal: Nanoscale, 2021 ; DOI: https://doi.org/10.1039/D1NR02291A .For plotting and data evaluation Excell and Origin 2008b were used. Funding by SNF via grants 163016, BSCGI0_157705, NCCR QSIT and 197360 is gratefully acknowledged.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2022 IEEE INTERNATIONAL CONFERENCE ON MICROWAVE MAGNETICS Talk given at a conference Hybrid magnonic nanostructures: from microwave-to-magnon transducers to magnon-induced magnetic bit reversal 20.06.2022 Beijing (on zoom), China JOGLEKAR Shreyas Sanjay; Grundler Dirk;
Future 3D Additive Manufacturing – The 3DMM2O Conference Poster Towards 3D magnon spintronics 03.04.2022 Schöntal, Germany GUO Huixin; Grundler Dirk;


Communication with the public

Communication Title Media Place Year
Talks/events/exhibitions Engineering magnets at the nanoscale Western Switzerland 2021

Associated projects

Number Title Start Funding scheme
163016 Reprogrammable magnonics based on periodic and aperiodic ferromagnetic nanostructures 01.04.2016 Project funding
177550 Terahertz spintronics and magnonics of ferro- and antiferromagnets 01.07.2018 ERA.Net RUS Plus
171003 Discovery and Nanoengineering of Novel Skyrmion-hosting Materials 01.10.2017 Sinergia

Abstract

The understanding and control of collective spin excitations (magnons) in materials which display spontaneous magnetic order have advanced considerably during the last decade. This was achieved via optimized synthesis techniques for magnetic multilayers and planar nanostructures, advancements in theory and micromagnetic modelling as well as state-of-the-art magnetic imaging which combines high spatial and temporal resolution. These recent achievements lend support to concepts developed in magnonics which promise energy-efficient wave-based logic and high-speed data processing in integrated chips. The magnons allow for clock frequencies from the GHz to the THz frequency regime. But key challenges remain concerning (i) the miniaturization of magnonic devices, (ii) the non-volatile storage of magnon-based computational results and (iii) the enhancement of integration density. In this proposal we plan to address these key challenges in that we (i) use a bottom-up nanotechnology based on DNA-assembly to create magnonic devices which are miniaturized on so far unexplored microscopic length scales, (ii) study the non-linear interaction between propagating magnons and nanomagnets to write magnetic memory bits, and (iii) develop further the conformal coating of nanoscaffolds with ferromagnetic metals to investigate magnon spintronics in 3D device architectures. In our studies we will combine materials science and engineering with experimental and computational physics. In particular, we will study and optimize the growth of ferromagnetic thin films on both DNA nanobreadboards and polymer-based 3D nanoscaffolds, apply magnetic force microscopy for magnetic imaging, conduct microwave spectroscopy and inelastic light scattering microscopy for the exploration of magnon band structures and perform magnetoresistance experiments as well as micromagnetic simulations. We expect to contribute to the forefront of magnonics and spintronics research in that (i) we excite magnons with unprecedentedly short wavelengths down to potentially 10 nm and explore coherent effects which so far have not been accessible in integrated magnonic circuits. (ii) We address “in-memory computing” by using magnons and exploring the non-volatile storage of wave-based information in nanomagnets. (iii) We enable interconnected magnetic nanodevices which are no longer planar but are vertically aligned on a substrate. We expect novel properties based on three-dimensional non-collinear spin structures. Our results will have a large scientific, societal and economic impact in that we apply biocompatible DNA nanotechnology and develop a resource-saving preparation method to create functional magnetic devices. They enable beyond von Neumann computing schemes and high-density 3D magnetic device architectures. Our research hence contributes to the societal challenge that consists in creating a platform for energy-efficient information technology which considers environmental compatibility, sustainability and resource savings.
-