Project
Back to overview
Comprehensive Observations of Episodic Basal, Englacial and Lateral Influences on Ice Stream Dynamics
Applicant |
Lüthi Martin Peter
|
Number |
197015 |
Funding scheme |
Project funding
|
Research institution |
Geographisches Institut Universität Zürich
|
Institution of higher education |
University of Zurich - ZH |
Main discipline |
Hydrology, Limnology, Glaciology |
Start/End |
01.03.2021 - 28.02.2025 |
Approved amount |
1'639'910.00 |
Show all
All Disciplines (3)
Hydrology, Limnology, Glaciology |
Other disciplines of Engineering Sciences |
Keywords (9)
glacier dynamics; geophysics; glaciology; ice stream; ice sheet; seismology; Greenland; discontinuous processes; drone
Lay Summary (German)
Lead
|
Detaillierte Untersuchung von sehr schnellem Gletscherfliessen
|
Lay summary
|
Schnell fliessende Gletscher sind die Arterien des Grönländischen Eisschildes, durch welche grosse Mengen von Eis ins Meer transportiert werden. Der schnellste davon, Jakobshavn Isbrae, fliesst mit 30-40 m pro Tag in einen tief eingeschnittenen Fjord, und verschiebt pro Jahr 35 Milliarden Tonnen Eis vom Landesinneren an die Küste. Dort brechen riesige Eisberge ab, die weit in den Atlantik hinaustreiben. Einer davon wurde der Titanic zum Verhängnis.
Die Bedingungen für schnelles Fliessen von Gletschern sind nur teilweise erforscht. Bei Eisdicken bis zu 1500 Metern ist es sehr schwierig, genaue Beobachtungen der Prozesse im und unter dem Eis anzustellen. Sicherlich ist Schmelzwasser, das durch die Reibung bei der schnellen Eisbewegung entsteht, wesentlich für das Gleiten über den Felsuntergrund. Gleichzeitig steht das Wasser unter hohem Druck und verflüssigt so das feinkörnige Sediment unter dem Eis. Im Sommer dringt zusätzlich viel Schmelzwasser von der Oberfläche durch Spalten und Kanäle unter das Eis, hebt es teilweise an, und beschleunigt so das Gletscherfliessen.
In diesem Projekt untersuchen wir, inwiefern episodische Prozesse das schnelle Fliessen verstärken. So wird durch die extreme Deformation das Eis zerrissen und geschwächt, was wiederum zu grösseren Geschwindigkeiten führt. Solche Bruchprozesse sind nicht kontinuierlich, sondern weisen eine chaotische Dynamik auf, das sogenannte Stick-Slip Verhalten.
Diese Dynamik erfassen wir mit einer Vielzahl von Instrumenten wie präzisem GPS, seismologischen Messungen, speziellen Drohnen und interferometrischen Radarsystemen. Diese Messdaten werden mit neu entwickelten Computermodellen analysiert und interpretiert. Mit diesen Erkenntnissen erlauben es, die zukünftige Entwicklung der grossen Eisschilde von Grönland und der Antarktis genauer zu berechnen.
|
Responsible applicant and co-applicants
Employees
Project partner
Publications
Wehrlé Adrien, Lüthi Martin P., Walter Andrea, Jouvet Guillaume, Vieli Andreas (2021), Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland, in
The Cryosphere, 15(12), 5659-5674.
Collaboration
University of Alaksa South |
United States of America (North America) |
|
- in-depth/constructive exchanges on approaches, methods or results - Research Infrastructure |
Middlebury College / Geology Dpt. |
United States of America (North America) |
|
- in-depth/constructive exchanges on approaches, methods or results - Research Infrastructure - Exchange of personnel |
Scientific events
Active participation
Title |
Type of contribution |
Title of article or contribution |
Date |
Place |
Persons involved |
EGU General Assembly 2022
|
Talk given at a conference
|
Short-term dynamics of Sermeq Kujalleq in Kangia (Jakobshavn Isbræ), Greenland derived from TRI and GNSS measurements
|
24.05.2022
|
Wien, Austria
|
Lüthi Martin Peter; Wehrlé Adrien; Nap Ana Christine;
|
Use-inspired outputs
Associated projects
Number |
Title |
Start |
Funding scheme |
156098
|
Understanding long-term outlet glacier calving dynamics with a combined high-resolution field,- remote-sensing- and modeling approach. |
01.03.2015 |
Project funding |
113503
|
Understanding the causes and future direction of the present rapid thinning of Jakobshavn Isbrae, Greenland |
01.04.2007 |
Project funding |
113503
|
Understanding the causes and future direction of the present rapid thinning of Jakobshavn Isbrae, Greenland |
01.04.2007 |
Project funding |
127197
|
Subglacial Controls on the Short Term Dynamics at the Margin of the Greenland Ice Sheet |
01.02.2010 |
Project funding |
Abstract
Outlet glaciers and ice streams are the main arteries of ice sheets which rapidly transport ice from the interior towards the ocean. They are typically delineated by highly crevassed margins separating the fast flowing trunk from slower moving inland ice. Figure 1 shows the lateral shear margins of Jakobshavn Isbrae (JI), a major outlet glacier of the Greenland Ice Sheet (GrIS) which has flowed at 20 m/day over the past century, and at double this speed over the last two decades.Fast glacier flow is often associated with anisotropic and discontinuous processes such that the commonly made assumptions about continuum fluid flow break down. In ice sheet outlet glaciers and ice stream margins, deeply cracked crevasse zones are ubiquitous, crystal orientation fabrics control the rheology, and non-continuous processes such as thrusting and folding, and stick-slip motion are likely active. All of these processes result in a bulk flow dynamics that is different from the conventionally assumed smooth fluid flow approximation. Despite considerable observational evidence, numerical models continue to ignore the actual complexities of glacier flow, which introduces additional uncertainty into projections on the future evolution of the ice sheets.In this project we will use concentrated field and modeling studies to better understand the consequences of stick-slip motion, thrusting, etc., on outlet glacier dynamics and evolution. We will investigate the susceptibility of ice deformation and seismicity within and across ice stream margins to continuous and episodic external forcings like surface melt, lake drainage events, and iceberg calving. At the example of JI, and taking full advantage of novel and proven field methods, we will monitor ice deformation and fracture processes at high spatial and temporal resolution. Combining continuous in-situ monitoring of ice motion, seismicity, vertical stretching, detailed long-range UAV (drone) surveys of surface motion and topography, and ground-based radar interferometry, we will produce a unique data set of ice deformation, fracturing rate and the external forcings. This data set will be interpreted with state-of-the-art numerical models: seismic source inversion, seismic noise tomography, a particle model for crevassing and faulting, and a multi-physics finite element model for ice stream flow.We are a team of researchers with complementary skill sets and ample experience with geophysical and seismological field setups, long-range UAV operations, and ground-based remote sensing. We have successfully performed field projects on the GrIS and specifically JI, and are used to dealing environmental and logistical challenges. Each team member has advanced glaciology by employing numerical modeling methods to interpret these hard-won field data.The proposed process study at JI is the next step in understanding the dynamics of fast ice sheet outlet glaciers and ice streams. The future evolution of the Greenland and Antarctic ice sheet is largely controlled by these fast flowing arteries. Understanding their physics is therefore mandatory for quantification and predictions of the ongoing rapid changes of the polar ice sheets.
-