Project

Back to overview

Optoelectronic functionality of hybrid III/V Transition Metal Dichalcogenide stacks

English title Optoelectronic functionality of hybrid III/V Transition Metal Dichalcogenide stacks
Applicant Fontcuberta i Morral Anna
Number 196948
Funding scheme Project funding
Research institution Laboratoire des matériaux semiconducteurs EPFL - STI - IMX - LMSC
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.02.2021 - 31.01.2025
Approved amount 729'416.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Condensed Matter Physics

Keywords (7)

nanotechnology; photoluminescence; III-V nanostructures; nanowires; transition metal dichalchogenides; nanotechnology; nanophotonics

Lay Summary (French)

Lead
Ce projet a comme but de combiner les propriétés des semiconducteurs unidimensionnels, autrement dits nanofils, avec des semiconducteurs bidimensionnels d’épaisseur presque atomique.
Lay summary

Ce projet a comme but de combiner les propriétés des semiconducteurs unidimensionnels, autrement dits nanofils, avec des semiconducteurs bidimensionnels d’épaisseur presque atomique. Il s’agit de structures relativement nouvelles avec beaucoup de perspectives pour des applications dans le domaine de l’électronique et optoélectonique de prochaine génération. Un des objectifs est de comprendre comment les propriétés fonctionnelles des deux types de structures peuvent être combinées pour augmenter leur potentiel. Un deuxième objectif est d’utiliser la morphologie unidimensionnelle des nanofils pour déformer localement les matériaux bidimensionnels pour modifier localement et a l’échelle nanométrique les propriétés optiques. Les résultats de ce projet devraient pouvoir être généralisés pour d’autres matériaux à basse dimensionnalité.

Direct link to Lay Summary Last update: 26.09.2020

Responsible applicant and co-applicants

Employees

Abstract

The goal of this project is to increase the range of optoelectronic capabilities of two-dimensional materials, 2D, with nearly 1-dimensional filamentary compound semiconductor structures (III-Vs). The functionality boost will result from the new association of materials and from the combined dimensionality. The study of this kind of hybrid structures is still an emerging area of research, our goal is to answer several of the questions that to date still remain unanswered. From the broad family of 2D materials we will focus on those exhibiting semiconducting properties: monolayer transition metal dichalcogenides, ML-TMDs. We are convinced the outcome of the project will be translatable to other 2D systems.We will first establish the conditions to obtain high-quality junctions between III-Vs and ML-TMDs. Here, we aim at answering the following questions concerning the fabrication of the junctions and the properties: a) is it possible to passivate both III-V semiconductors and ML-TMDs to obtain stable and reproducible response of their junction (heterostructure)?b) what kind of band alignment exists between selected TMDs and III-Vs? c) are the optical and electrical properties consistent with theoretical predictions on band alignments?Building up from this first part we will then combinate of ML-TMDs with III-Vs in the form of 1D-like structures, nanowires. The former will be organized in an ordered manner on a substrate. Here, we will respond to the following questions:a)What range of nanowire sizes can be combined with ML-TMDs while conserving the physical integrity of both?b)What range of strain can the ML-TMDs endure upon deposition on top of a nanowire array? c)What is the effect of this localized strain on the optical properties of ML-TMDs? d)Is it possible to associate the photonic properties of nanowires with the light emission of ML-TMDs to create ultra-bright emitters and/or devices?Transition metal dichalcogenides (TMDs) monolayers are a relatively new class of two-dimensional materials that exhibit many fascinating electronic and optoelectronic properties. Their combination with III-V nanowires has, to the best of our knowledge, not yet been explored. III-V semiconductors can provide additional functionality by their optoelectronic properties. The nanowire geometry adds new possibilities in terms of strain and photonic engineering. We believe the results of this work will open new avenues in the nano-engineering and in the optoelectronics arena.
-