Project

Back to overview

Pushing the frontier in 3D X-ray microscopy

Applicant Holler Mirko
Number 196898
Funding scheme Project funding
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Material Sciences
Start/End 01.09.2021 - 29.02.2024
Approved amount 355'736.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Other disciplines of Physics

Keywords (3)

X-ray nano tomography; High-resolution 3D imaging; X-ray ptychography

Lay Summary (German)

Lead
Mikroskopische Untersuchungen sind in vielen Bereichen der Forschung unabdinglich und erlauben eine detaillierte Einsicht und Analyse in den Aufbau und die Struktur von Materialien. Hierbei gibt es sehr viele verschiedene Verfahren. Am PSI entwickeln wir seit etwa 10 Jahren die sogenannte 3D Röntgenptychographie, wobei hier derzeit Auflösungen im 10 Nanometer Bereich erreicht werden können. Die Geräte werden der nationalen und internationalen Forschergemeinde an der Synchrotronlichtquelle Schweiz (SLS) zur Verfügung gestellt. Das Besondere ist hierbei die Kombination von erreichbarer Auflösung und Röntgenstrahlung, die es ermöglicht auch grössere Probenvolumen zu durchdringen, ohne die Probe dabei zu zerstören. Die erreichbare Kombination von Auflösung und Volumen ist einzigartig und wird von keinem anderen Verfahren erreicht.
Lay summary
Das Hauptziel des vorliegenden Projektes ist die Weiterentwicklung der höchauflösenden 3D Röntgenptychographie. Es soll verstanden werden, welche Mechanismen die derzeit erreichbare Auflösung begrenzen, und Methoden entwickelt werden, diese Grenzen zu überwinden. Hierbei wird eine 3D Auflösung von 3 nm angestrebt. Eine solche Auflösung wird derzeit nur von destruktiven Methoden erreicht, die also während der Messung die Probe zerstören.
Im Projekt sind konkrete Messungen an verschiedenen wissenschaftlich relevanten Probensystemen geplant. Als Beispiele sollen hier Halbleiter Bauteile, konkret Mikrochips, und Katalysatoren zur Elektrolyse von Wasser genannt werden.

Die Weiterentwicklung der 3D Ptychographie wird die führende Rolle des PSI und der Schweiz in diesem Bereich weiterhin sichern. Gleichzeitig werden wichtige Erkenntnisse für den Einsatz der Methode nach dem Umbau der SLS (2024) gewonnen. Dieser Umbau wird dann deutlich verkürzte Messzeiten erlauben.
Neben diesen weitreichenden Zielen werden darüber hinaus unmittelbar Erkenntnisse über die im Projekt zum Einsatz kommenden Proben gewonnen.
Direct link to Lay Summary Last update: 31.05.2021

Responsible applicant and co-applicants

Employees

Name Institute

Project partner

Associated projects

Number Title Start Funding scheme
145056 OMNY (tOMography, Nano, crYo stage) 01.01.2013 R'EQUIP

Abstract

3D X-ray ptychography is a lens-less imaging technique pioneered at the Paul Scherrer Institut (PSI). In the multi-keV energy range it allows combining high penetration and resolution, thereby non-destructive imaging, in the nanometer resolution range in large volumes, an imaging regime otherwise uncovered. Over the last decade several microscopes dedicated to 3D ptychography have been developed and built at PSI, including a continuous development of the related data reconstruction pipelines. Today, imaging is routinely done and thus scientific questions in the areas from biology to materials science can be investigated. In high-contrast samples a 3D resolution of below 10 nm has been reached, which is more than an order of magnitude improvement over more conventional X-ray tomography approaches.Founding on our world-leading instrumentation and resolution, we will further shrink the resolution gap to electron microscopy in this project by improving resolution down to 3 nm. Resolution is sample dependent, and is ultimately limited by radiation damage. In this project we aim at reaching highest resolution in high-contrast, radiation insensitive samples. This will allow 3D ptychography to replace current destructive imaging techniques and directly contribute to the development of material science. Our project will thereby generate important knowledge on ultimate X-ray microscopy limits. Most synchrotrons around the word, including the Swiss Light Source, undergo upgrade programs towards a diffraction limited storage ring. Ptychography can directly employ the expected increase in coherent flux and the present project will deliver an important knowledge base needed for improved imaging at next-generation storage rings.Increasing resolution in 3D ptychographic imaging requires addressing several limiting factors. Experiments with stepwise increasing difficulty are planned. All samples have scientific relevance and the related science projects will directly benefit from higher resolution: In a first step, developments and imaging demonstrations will be performed on a 3D gyroid sample. These are binary objects with high contrast and have proven very radiation hard. At currently reachable resolution data analysis suffers and measurements of samples with smallest structures are not possible. In a second step such demonstrations will be extended to the imaging of integrated circuits (ICs). Microscopy of ICs is the foundation for the optimization of production and design, as well as for failure analysis and the detection of malicious hardware for critical applications. Already in the sub-20 nm resolution range, 3D ptychography has proven useful for the imaging of ICs, allowing resolving the chip’s connectome. Here we envision to perform the first imaging of a damage caused by electrostatic discharge. Today such imaging and analysis is done via destructive methods, which unfortunately can cause damage during the imaging process. Finally, the imaging of polymer electrolyte water electrolysis (PEWE) anodic catalyst layers is planned. PEWE offers great opportunities for storing excess electricity provided by fluctuating renewable energy sources. However, long-term operation is required for the widespread commercialization of this technology. The related particles are covered by a layer, which currently cannot be resolved by our X-ray tomography. This layer is however crucial for the functioning of PEWE cells and resolving it in 3D will be of direct impact in the related electrochemistry projects.
-