Project
Back to overview
NEW SOLUTIONS FOR DATA ASSIMILATION AND COMMUNICATION TO IMPROVE HYDROLOGICAL MODELLING AND FORECASTING
English title |
NEW SOLUTIONS FOR DATA ASSIMILATION AND COMMUNICATION TO IMPROVE HYDROLOGICAL MODELLING AND FORECASTING |
Applicant |
Brunner Philip
|
Number |
195533 |
Funding scheme |
CHIST-ERA
|
Research institution |
Centre d'hydrogéologie et de géothermie Université de Neuchâtel
|
Institution of higher education |
University of Neuchatel - NE |
Main discipline |
Other disciplines of Earth Sciences |
Start/End |
01.09.2021 - 31.08.2024 |
Approved amount |
291'727.00 |
Show all
All Disciplines (5)
Other disciplines of Earth Sciences |
Other disciplines of Environmental Sciences |
Other disciplines of Engineering Sciences |
Other disciplines of Physics |
Keywords (4)
water resrouces management; hydrogeology; numerical modelling; data assimilation
Lay Summary (German)
Lead
|
Die Zuverlässigkeit von hydrologischen und hydrogeologischen Modellen kann durch die Integration von Felddaten erheblich erhöht werden. Das Projekt setzt hier an: durch innovative Datenerfassung, neuen Downscaling-Ansätzen und neuesten Modellansätzen werden die Unsicherheiten dieser Modelle gezielt reduziert. Die Modellresultate werden durch Stakeholder genutzt und zur Optmierung von Wasserressourcen eingesetzt.
|
Lay summary
|
Hydrologische Modelle sind wichtige Instrumente für das Management von Wasserressourcen. Die neuste Generation dieser Modelle können die relevanten physikalischen Prozesse und ihre Rückkopplungsmechanismen simulieren. Ein limitierender Faktor ist jedoch der Mangel an Messungen zur Kalibrierung der Modellparameter und zur Beurteilung der Robustheit der Modelle. WATERLINE wird Multi-Source-Informationen aus der Fernerkundung, historischen Daten, In-situ-Daten aus meteorologischen Netzwerken sowie Crowdsourced-Messungen nutzen, um hydrologische Modelle und deren Vorhersagen zu verbessern. Leider können weder In-situ-Netzwerke noch Fernerkundung allein ausreichende Informationen liefern, um die hohe räumliche und zeitliche Variabilität hydrologischer Prozesse zu erfassen. In jüngster Zeit wurden Downscaling-Frameworks entwickelt, welche grobskaligen Produkten und hochaufgelösten Daten unter Verwendung von In-situ-Messungen integrieren. Damit kann die Effizienz und Robustheit von hydrologischen Modellen erheblich verbessert werden. Das WATERLINE-Konzept wird durch die Entwicklung eines Webservice-Tools mit drei modularen Anwendungen umgesetzt, die auf a) die Nutzung durch Wissenschaftler (Datenzugriff, Downscaling, Filterung, Unsicherheitsanalyse, Modellierungsanwendungen); b) die Nutzung durch nicht technisch geschulte Stakeholder, und; c) Nutzung durch hydrologisch interessierte Benutzer über eine Crowdsourcing-App, die es jedem Benutzer ermöglicht, über jedes hydrologisch relevante Ereignis und dessen Schweregrad mittels ortsbezogener Dienste und Texteingaben zu berichten. Solche Informationen können als zusätzliche Informationsquelle in den Modellierungs- und Vorhersageprozess miteinbezogen werden.
|
Responsible applicant and co-applicants
Employees
Project partner
Associated projects
Number |
Title |
Start |
Funding scheme |
179017
|
Advancing hydrogeological modeling through novel tracer approaches, the explicit simulation of tracers and advanced inversion methods |
01.12.2018 |
Project funding |
162754
|
Integrating spatial predictions of vegetation, soils, geomorphology and hydrology for improved assessment of ecosystem services under climate change |
01.01.2016 |
Interdisciplinary projects |
Abstract
Hydrological models are an essential tool for water resources assessment and management. Advanced computational algorithms are capable of simulating the relevant physical processes and form the feedback mechanism across a wide range of spatial and temporal scales. However, a bottleneck of these models is the lack of environmental observations to calibrate model parameters and to assess the robustness of model predictions. WATERLINE will employ multi-source information from remote sensing, historical data, in-situ data from meteorological networks as well as crowdsourced data to improve hydrological models and their predictions. The relevant physical processes and heterogeneity of hydrological catchments need to be integrated in hydrological models as a basis for reliable model predictions. A major challenge in this endeavour is identifying the observation data with the highest information content to constrain model parameters.Unfortunately, neither in-situ networks nor remote sensing alone can provide sufficient information to capture the high spatial and temporal variability of hydrological processes. Recently, downscaling frameworks have been developed, building robust models between coarse scale products and high-resolution ancillary variables using in-situ measurements. The lack of in-situ measurements to train such models can be overcome by the growing availability of crowdsourced observations. WATERLINE will improve the efficiency and robustness of hydrological models through strategic integration of variables covering different spatial and temporal scales. Furthermore, we will optimize the computational performances to provide near real-time and short-term predictions of various hydrological states with unprecedented spatial detail. Improved representation of soil moisture, groundwater levels and recharge, stream discharge, and evapotranspiration can significantly advance the sustainable management of water resources for a wide range of stakeholders.The WATERLINE concept will be implemented through development of a web services tool with three modular applications, targeting a) use by scientists (data access, downscaling, filtering, uncertainty analysis, modelling applications), b) use by non-technically trained stakeholders, providing enhanced visualization outputs, in the form of maps, graphs, indices enhanced with Augmented Reality and Virtual Reality functionalities, and c) crowdsourcing of hydrological information where a random user can report about any hydrological-related event and its severity using location-based service and textual input, which is then considered as an additional source of information for modelling and forecast estimation. User groups, such as farmers, water authorities, fire brigade services, entrepreneurs in tourist, agricultural, industrial sector will be actively involved in the development of the web-based interfaces to ensure the usability and adoption of the outcomes by relevant user communities.
-