Project

Back to overview

Influence of plate tectonics on life evolution and biodiversity: bio-geodynamical numerical modeling approach

English title Influence of plate tectonics on life evolution and biodiversity: bio-geodynamical numerical modeling approach
Applicant Gerya Taras
Number 192296
Funding scheme Project funding
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.09.2020 - 31.08.2024
Approved amount 1'134'208.00
Show all

All Disciplines (4)

Discipline
Geophysics
Geology
Ecology
Palaeontology

Keywords (7)

continental breakup; biodiversity; plate tectonics; bio-geodynamical models; climate models; continental collision; life evolution

Lay Summary (German)

Lead
Dieses Projekt finanziert eine vierjährige Forschungsarbeit von drei Doktorats-Studenten und ein Postdoc am Institut für Geophysik der ETH Zürich mit dem Thema der Einfluss der Plattentektonik auf Lebensentwicklung und Biodiversität. Als Forschungsmethode wird eine innovative interdisziplinäre biogeodynamischer numerische Modellierung benutzt und weiterentwickelt.
Lay summary

Die Schlüsselfrage „Wie hat das Leben die Erde geprägt - und wie hat die Erde das Leben geprägt?“ erscheint unter den zehn wichtigsten Forschungsfragen, die Geowissenschaften des 21. Jahrhunderts prägen. Es ist klar, dass die geodynamische Entwicklung der Erde eng mit der Entwicklung ihrer Atmosphäre, Ozeane, Landschaften und Lebensformen verbunden ist. Daher ist die biogeodynamische numerische Modellierung (d.h. die gekoppelte Modellierung des Erdinneren, des Klimas, der Umwelt und der Lebensentwicklung) eine der Grenzforschungsaufgaben in den Bereichen Geodynamik, Ökologie und Evolution sowie verwandten Disziplinen. In diesem Projekt schlagen wir die Einsatz und Weiterentwicklung von hybriden biogeodynamischen Modellierung vor, die (i) Plattentektonik Modelle, (ii) Atmosphäre und Klimawandel Modelle und (iii) Lebensentwicklung Modelle koppeln. Die biogeodynamischen Modelle werden verwendet, um verschiedene Plattentektonik Szenarien zu untersuchen und ihre möglichen Auswirkungen auf die Entwicklung der Umwelt, das Klima und die Diversifizierung des Lebens zu verstehen. Mit diesen Analysen wollen wir folgende zwei allgemeine Fragen beantworten: (1) Wie hat die Entwicklung der plattentektonischen Prozesse durch die Erdgeschichte die Diversifizierung des Lebens beeinflusst? und (2) Welchen Beitrag leisten verschiedene plattentektonische Prozesse (Kontinentalbruch, Ozeanbodenspreizung, Kontinentalkollision) zur Diversifizierung des Lebens?

Dieses interdisziplinäre Forschungsprojekt wird von der Gruppe Geophysical Fluid Dynamics der ETH Zürich in Zusammenarbeit mit der Gruppe Landscape Ecology der ETH Zürich (Prof. Pellissier) und mit zwei externen Experten für Atmosphären- / Klimamodellierung (Dr. Gillmann) und Planetenentwicklung und Tektonik (Prof. Stern) durchgeführt. 

 

 

 

Direct link to Lay Summary Last update: 12.08.2020

Responsible applicant and co-applicants

Employees

Project partner

Abstract

The key question “How has life shaped Earth - and how has Earth shaped life?” appears among the top ten research questions shaping 21st-century Earth Science. It is well understood that Earth’s geodynamic evolution is intimately linked to the evolution of its atmosphere, oceans, landscape and life. Therefore, bio-geodynamical numerical modeling (i.e., coupled modeling of Earth’s interior, climate, environment and life evolution) stands as one of the frontier research tasks in geodynamics, biology, and more specifically ecology and evolution as well as related disciplines. This is the promising new field of Bio-geodynamics, which explores connections between deep Earth processes, surface processes, and the diversification of life. Deep Earth processes include tectono-magmatic style, for example whether plate tectonics or single lid tectonics operate, and the influence of mantle plumes and seafloor hydrothermal activity. Surface processes include climate buffering by CO2-SiO2 interactions and nutrient supply by weathering. The processes of the diversification of life include the processes of speciation, as the generation of new species, as well as phenotypic evolution as the generation of new phenotypic traits, which should depend on the dynamic of the underlying landscape. Accelerated development and application of new global- and regional-scale computational bio-geodynamical numerical modeling tools is needed, which will allow investigating complex feedbacks between the Earth’s interior, atmosphere, ocean, landscape and life. In this project, we propose the development and employment of both regional- and global-scale 3D high-resolution bio-geodynamical modeling toolkits, coupling (i) available global and regional geodynamic models of plate tectonics processes, (ii) atmospheric and climate change and (iii) spatially-explicit models of species speciation, evolution and extinction. The resulting hybrid bio-geodynamical numerical modeling tools will be used to explore systematically various plate tectonics scenarios and understand their potential effects for the evolution of the environment, climate and the diversification of life. With these analyses, we aim at answering following two general questions: •How did the evolution of plate tectonic processes though the Earth’s history influences the diversification of life?•What are the contributions of different plate tectonic processes (continental breakup, oceanic spreading, continental collision) on the diversification of life?In this project, we aim to rigorously develop and apply the hybrid 3D bio-geodynamical numerical modeling tools to understand how plate tectonic processes influence the diversification of life. In this project, we will however not explore the feedback that life has on earth surface processes (e.g. erosion) or on the atmosphere (e.g. CO2 storage) since exploring the one-way link already represents a challenging, but highly innovative task. We will focus our research within the following four interrelated important directions that form the basis for four interrelated postdoc/PhD sub-projects:1)Coupled bio-geodynamical models development and testing (postdoc), 2)Influence of global tectono-magmatic styles on the diversification of life and biodiversity dynamics (PhD1) 3)Effects of continental breakup and divergence on biodiversity dynamics (PhD2) 4)Effects of continental convergence and collision on biodiversity dynamics (PhD3).This cross-disciplinary research project will be performed by the Geophysical Fluid Dynamics group of ETH Zurich in cooperation with the Landscape Ecology group of ETH Zurich (Prof. Pellissier) and with two external experts in atmosphere/climate modeling (Dr. Gillmann) and global planetary evolution and tectonics (Prof. Stern). The bio-geodynamical codes development has already successfully started during the collaborative preparatory MSc thesis work of Dominic Stemmler at ETH Zurich co-supervised by the PI and Prof. Pellissier.
-