Back to overview

Soliton Microcombs: Exploring driven dissipative Kerr cavities

English title Soliton Microcombs: Exploring driven dissipative Kerr cavities
Applicant Kippenberg Tobias Jan
Number 192293
Funding scheme Project funding
Research institution Laboratoire de photonique et mesures quantiques EPFL - STI - IEL - LPQM2
Institution of higher education EPF Lausanne - EPFL
Main discipline Condensed Matter Physics
Start/End 01.06.2020 - 31.05.2023
Approved amount 720'378.00
Show all

All Disciplines (2)

Condensed Matter Physics
Other disciplines of Physics

Keywords (7)

optical frequency combs; integrated photonics; Kerr solitons; nonlinear dynam; photonic lattices; LiDAR; nonlinear spectroscopy

Lay Summary (German)

Optische Frequenzkämme hatten in den letzten 20 Jahren einen bahnbrechenden Einfluss auf unsere Fähigkeit zur ultrapräzisen Messung von Frequenz, Zeit und Distanz und haben viele Bereiche der optischen Spektroskopie revolutioniert. In den letzten fünf Jahren ist es uns gelungen solche Frequenzkämme auf Basis von integrierten optischen Schalkreisen und kompakten Wellenleitern aus Siliziumnitrid zu verwirklichen. Wir verwenden optische Mikroresonatoren höchster Güte um ultrakurze Lichtpulse, sogenannte dissipative Kerr Solitonen zu erzeugen. Die Dynamik des Lichtfeldes in komplexen Netzwerken nichtlinearer Mikroresonatoren eröffnet ein neues Feld zur Studie nichtlinearer Systeme außerhalb des thermischen Gleichgewichts, während die fortschreitende technische Entwicklung miniaturisierter Frequenzkämme einen großen Einfluss auf die Spektroskopie, Sensorik und Informationstechnologie der Zukunft haben wird.
Lay summary
Das Ziel unseres Forschungsprojektes ist die Untersuchung neuartiger Phänomene in der nichtlinearen Dynamik von komplexen Netzwerken nichtlinearer Mikroresonatoren. Ihr Verständnis und unsere Fortschritte zur Fabrikation und Kontrolle von Mikroresonatoren und Netzwerken ermöglichen neuartige Anwendungen zur dynamischen Kontrolle wird es uns ermöglichen neuartige Anwendungen kompakter Frequenzkammquellen zu erschliessen. Unsere Schwerpunkte liegen hier im Bereich der Laserabstandsmessung (LiDAR) und der nichtlinearen Spectroskopie.

Unsere Arbeit wird die Möglichkeiten eines modernen spezialisierten Labors für hochpräzise Messtechnik in eine alltagstaugliche Technologie überführen, welche eine Vielzahl von Anwendungen in Sensorik und Informationstechnologie oder biomedizinischen Diagnose revolutionieren könnte.
Direct link to Lay Summary Last update: 07.05.2020

Responsible applicant and co-applicants


Associated projects

Number Title Start Funding scheme
176563 Energy efficient optical frequency combs based on photonic integrated resonators and temporally structured pump light 01.05.2018 Bridge - Discovery
204927 Cavity Quantum Electro-optomechanics 01.12.2021 Project funding
165933 Microresonators based Frequency combs: exploring temporal solitons 01.03.2017 Project funding
165933 Microresonators based Frequency combs: exploring temporal solitons 01.03.2017 Project funding
186364 (QuantEOM) Quantum-coherent electro-optic microwave-to-optical conversion with GaP and BaTiO3 01.03.2020 Sinergia
198164 ICP-CVD of silicon nitride and silicon oxide for novel integrated photonics and MEMS devices 01.03.2021 R'EQUIP


Laser frequency combs have provided unparalleled precision in spectroscopy, unlocked atomic clocks, provided impetus to multi-dimensional near and mid-infrared spectroscopy and continue to advance many fields of science and technology. In the past years, a second revolution has taken place around the ability to create chip-scale optical frequency combs. Since the observation in 2014 that such micro-combs can be operated in the soliton regime, there has been rapid progress in the exploration of the Physics and applications of driven dissipative Kerr cavities. Remarkably, dissipative Kerr solitons, which mathematically are solutions to a driven dissipative detuned nonlinear Schrödinger equation, and physically resulting from the double balance of parametric gain and cavity loss, as well as nonlinearity and dispersion, have been observed in virtually all micro-resonator platforms, as well as macroscopic fiber and bulk Fabry Perot resonators. They have opened a new and fast moving research area at the interface of frequency metrology, integrated photonics and soliton physics, and are also connected to other fields, notably self-organization and non-equilibrium Physics. Indeed the Physics of microcombs is described by the Lugiato Lefever equation, an equation first introduced to describe spatial self organization and “dissipative structure” in systems driven far from equilibrium. Soliton microcombs have in the past years led to numerous advances, both applied, realizing chipscale atomic clocks, chipscale frequency synthesizer, coherent communication, but also fundamental, such as the exploration of novel dissipative soliton effects, including previously unknown and non-anticipated phenomena, including Fermi-Pasta-Ulam-Tsingou recurrence, Stokes solitons, soliton switching, soliton crystals. The current proposal will explore novel phenomena in driven dissipative Kerr resonator lattices (i.e. networks of resonators), and will moreover break new ground in applications of soliton microcombs, notably in massively parallel ranging, as well as novel dual comb stimulated Raman imaging. Recent advances in the ability to create ultra low loss photonic integrated resonators, provides the opportunity to explore dissipative Kerr soliton in lattices of resonators. Such networks of resonators, both 1D and 2D, are an entirely unexplored terrain when it comes to spatiotemporal self organization. We aim to demonstrate solitons in lattices, and seek to explore Physics beyond the single particle (resonator) Lugiato Lefever equation. In addition we will also explore platicons, a much less widely studied dark pulse waveform, and explore of dynamics such as switching, breathing, crystals are also present. Taken together we expect to significantly advance our still incomplete understanding of the rich nonlinear Physics in arrays and lattices of microresonsators, in both normal and anomalous dispersion regimes. A further aim of this proposal is to advance our understanding and ability to dispersion engineer, afforded by introducing coupled resonators arrays that can be tuned e.g. via piezo actuators or thermal heaters. This allows unprecedented dispersion landscapes that can allow soliton molecules, or spectra that correspond to waveforms approaching a single optical cycle. In addition to exploring soliton Physics in such novel composite resonators, we will also explore new applications of microcombs, notably a novel approach to massively parallel coherent ranging, as well as a novel scheme to apply dual comb Raman loss imaging. Both these schemes are not only new applications of microcombs, but are also in themselves novel approaches to both ranging, as well as Raman imaging.