Project

Back to overview

SPherical III-V LAsers - SPILA

English title SPherical III-V LAsers - SPILA
Applicant Vico Trivino Noelia
Number 190806
Funding scheme Spark
Research institution IBM Research GmbH
Institution of higher education Companies/ Private Industry - FP
Main discipline Microelectronics. Optoelectronics
Start/End 01.12.2019 - 30.11.2020
Approved amount 99'820.00
Show all

All Disciplines (3)

Discipline
Microelectronics. Optoelectronics
Other disciplines of Engineering Sciences
Material Sciences

Keywords (4)

Semiconductor lasers; Integrated light sources on Si; III-V epitaxy; Spherical resonators

Lay Summary (German)

Lead
Optische Resonatoren und III-V Halbleiter sind Schlüsselelemente in der Technologie. Ein kugelförmiger Resonator bietet viele Vorteile, seine Herstellung ist jedoch eine technische Herausforderung. Unser Ziel ist es den ersten sphärischen Resonator auf der Basis von III-V Halbleitern zu entwickeln.
Lay summary

Hintergrund

Optische Resonatoren und III-V-Halbleiter (z. B. GaAs, InP, GaN, AlN …) sind wichtige Bausteine und Materialien, die wir in unzähligen elektronischen Geräten des täglichen Gebrauchs, wie z.B. LEDs und Lasern, anzutreffen sind. Für die nächste Generation optoelektronischer Bauelemente werden verbesserte und neuartige Resonatoren untersucht. Diese können mit unterschiedlichen Geometrien und aus vielfältigen Materialien aufgebaut werden. Ein idealer Resonator würde Licht in einem kompakten Volumen auf unbestimmte Zeit und ohne Verluste behalten. Innerhalb einer Kugel zirkulieren Lichtwellen dank ihrer gekrümmten Wände. Aufgrund dieser 3D-Kurvenform 3D-Kurvenform sind kugelförmige Resonatoren in ihrer Kategorie dem Ideal am nächsten. Trotzdem wurden bisher hauptsächlich 2D-Geometrienwie z.B. Scheiben, Toroide oder Ringeverwendet und untersucht. Dies ist darauf zurückzuführen, dass es eine grosse technologische Herausforderung darstellt, einen Halbleiterkristall in Kugelform zu formen. Dieses Projekt fokusiert sich auf die Entwicklung des ersten kugelförmigen aktiven optischen Resonators auf der Basis von III-V-Halbleitern für die nächste Generation optoelektronischer Bauelemente.

Das Ziel 

Ziel von SPILA ist es, eine Methode zur Herstellung des ersten kugelförmigen aktiven optischen Resonators auf der Basis von III-V-Halbleitern zu etablieren. Wir werden zunächst die kugelförmige Struktur entwickeln, die nach wie vor die grösste technische Herausforderung darstellt. Anschliessend werden wir die optische Leistung unserer kugelförmigen Resonatoren als Lichtquellen untersuchen und sie für Laseranwendungen weiter optimieren.

Bedeutung

Dieses Projekt wird den Weg für neue Anwendungen ebnen, stellt aber nur den ersten Baustein dar. In SPILA werden wir uns auf Laseranwendungen mit konventionellen Halbleitermethoden konzentrieren. Diese Arbeit kann daher auf andere Materialsysteme ausgedehnt werden. Dank der einzigartigen Vielseitigkeit unseres Ansatzes gibt es unzählige Anwendungen, die von den Vorteilen unserer kugelförmigen Resonatoren profitieren können. Dazu gehören Ultraschallsensoren, Anwendungen im Gesundheitswesen, Plasmonik, nichtlineare Optik, Solarzellen, Quantenkommunikation und Quantenkryptographie, optische Antennen und Grundlagenforschung in der Physik.






Direct link to Lay Summary Last update: 15.02.2020

Responsible applicant and co-applicants

Employees

Publications

Publication
In-Plane Monolithic Integration of Scaled III-V Photonic Devices
Scherrer Markus, Vico Triviño Noelia, Mauthe Svenja, Tiwari Preksha, Schmid Heinz, Moselund Kirsten E. (2021), In-Plane Monolithic Integration of Scaled III-V Photonic Devices, in Applied Sciences, 11(4), 1887-1887.
Scaling of metal-clad InP nanodisk lasers: optical performance and thermal effects
Tiwari Preksha, Wen Pengyan, Caimi Daniele, Mauthe Svenja, Triviño Noelia Vico, Sousa Marilyne, Moselund Kirsten E. (2021), Scaling of metal-clad InP nanodisk lasers: optical performance and thermal effects, in Optics Express, 29(3), 3915-3915.
Hybrid III–V Silicon Photonic Crystal Cavity Emitting at Telecom Wavelengths
Mauthe Svenja, Tiwari Preksha, Scherrer Markus, Caimi Daniele, Sousa Marilyne, Schmid Heinz, Moselund Kirsten E., Vico Triviño Noelia (2020), Hybrid III–V Silicon Photonic Crystal Cavity Emitting at Telecom Wavelengths, in Nano Letters, 20(12), 8768-8772.

Datasets

Raw Data related to Research Article: Scaling of metal-clad InP nanodisk lasers: optical performance and thermal effects, Optics Express, volume 29, issue 3, 2021

Author Tiwari, Preksa
Persistent Identifier (PID) http://doi.org/10.5281/zenodo.4447005
Repository Zenodo


In-Plane Monolithic Integration of Scaled III-V Photonic Devices

Author Scherrer, Markus
Persistent Identifier (PID) http://doi.org/10.5281/zenodo.4550529
Repository Zenodo


Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2020 European Conference on Optical Communications (ECOC) Talk given at a conference In-plane monolithic integration of scaled III-V photonic devices 06.12.2020 Virtual, Belgium Moselund Kirsten; Vico Trivino Noelia;
2020 MRS spring fall meeting and exhibit Talk given at a conference Template-assisted selective epitaxy for integrated photonics (Invited talk) 27.11.2020 Virtual, United States of America Vico Trivino Noelia; Moselund Kirsten;


Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Self-aligned growth spawns hybrid photonic devices Compound semiconductor International 2021

Abstract

Optical cavities ? or micro-nanoresonators ? have proven extremely effective to confine light in reduced footprints. They are key components in many of the devices we use every day. For instance, data storage technologies and disk readers rely on III-nitride semiconductors laser diodes. Moreover, long-distance transmission of data over optical fibers which has enabled the rise of the internet is based on microcavities made of III-V semiconductor materials. Microresonators are also expected to play a crucial role in the development of future technologies including quantum information processing and sensing.The primary and most explored use of optical cavities is the realization of efficient and compact laser sources, which are mainly composed of a cavity providing optical feedback and an active medium providing optical gain.Microspheres belong to the so-called whispering gallery mode (WGM) cavities, which confine light by continuous total internal reflection at their perimeter. Microdisks, rings and toroids are also classified as WGM resonators (WGMRs) and have been widely studied. Among the WGMRs, the spherical shape most closely approximates an ideal resonator, which would confine light without loss indefinitely. However, obtaining the three-dimensional geometry of the ideal sphere has not been achieved so far in conventional semiconductor technologies. There is therefore great potential in developing ways of fabricating spherical lasers with enhanced performance.Existing spherical WGM lasers are mostly based on a sphere of passive material (e.g. silica) coated by an active material (e.g. colloidal quantum dots). Hence, they lack the possibility to create more complex structures, such as doped layers and embedded quantum wells or quantum dots, which are typically required in conventional lasers. This means that they are intrinsically limited to either passive or optically pumped applications. In addition to the limitations on material, all the current approaches for fabricating spherical resonators exhibit poor control over size and position of the spheres, which dramatically limits applications.In this project we will develop the first spherical laser based on III-V semiconductors. We are in the process of patenting a method to grow III-V semiconductors on silicon with spherical shape that overcomes the mentioned limitations. It is also the first method that allows fabricating III-V materials in a spherical form. Our approach allows to precisely locate, with lithographic precision, arrays or individual spheres of well-defined dimensions.Presently, we have demonstrated first batches of unoptimized quasi-spheroid structures that already indicate evidence of lasing. The SPILA project will allow us to develop this new approach and demonstrate the first ever optically pumped III-V spherical laser.SPILA will demonstrate an unprecedented way of creating spherical WGM lasers based on III-V semiconductors. This will spark new ways of thinking, open new research strategies and trigger the development of unconventional device concepts. These novel III-V based spheres can either be fabricated as precisely positioned stand-alone lasing cavities, or be transferred into a liquid solution to provide an alternative to present nano-colloidal technologies, but with higher achievable gain and operating in the NIR, which is not achievable with current systems.
-