Back to overview

Feasibility of conformal FLASH on a clinical proton gantry

English title Feasibility of conformal FLASH on a clinical proton gantry
Applicant Meer David
Number 190663
Funding scheme Spark
Research institution Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Other disciplines of Physics
Start/End 01.12.2019 - 30.11.2020
Approved amount 98'600.00
Show all

All Disciplines (2)

Other disciplines of Physics
Technical Physics

Keywords (5)

proton therapy; FLASH radiotherapy; pencil beam scanning; beam delivery systems; gantry

Lay Summary (German)

Ziel jeder Strahlentherapie ist es die richtige Dosis zielgenau im Tumorvolumen zu deponieren. In strahlenbiologischen Experimenten mit Elektronenstrahlen und deutlich erhöhten Dosisraten (sogenannte FLASH Bestrahlungen) konnte in den letzten Jahren eine bessere Schonung des gesunden Gewebes unter Beibehaltung der Wirkung auf den Tumor beobachtet werden. Ob der bisher noch nicht vollständig verstandene FLASH Effekt auch für Protonentherapie zutrifft, ist bisher unbeantwortet. Im Vergleich zur konventionellen Strahlentherapie ist konforme Protonentherapie mittels Spot-Scanning wesentlich komplexer und eine signifikante Erhöhung der Dosisrate erfordert neue technische Lösungen.
Lay summary

Inhalt und Ziel des Forschungsprojekts
Unser Ziel ist es eine klinisch nicht mehr benutzte Protonen-Gantry für biologische FLASH Experimente aufzurüsten. Das eingesetzte Protonen-Zyklotron liefert bei maximaler Strahlenergie zwar einen hohen Protonenstrahlstrom, allerdings wird die Dosisrate durch die Energiemodulation stark reduziert. Daher wollen wir (i) den ungebremsten Protonenstrahl zum Bestrahlungsplatz transportieren und (ii) die Energieanpassung lokal auf der Anlage durchführen. Weiter wird untersucht, wie (iii) die Dosis im FLASH Regime präzise appliziert werden kann. Schlussendlich wird (iv) der Effekt der Dosisratenerhöhung auf die Strahlqualität untersucht.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts
Der FLASH Effekt hat das Potential die Strahlentherapie und die Tumorbehandlung zu revolutionieren. Mit unserem Forschungsprojekt schaffen wir die Grundlage für weitere Untersuchungen des FLASH Effekts in der Protonentherapie.

Direct link to Lay Summary Last update: 16.12.2019

Responsible applicant and co-applicants


Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Scientific Association of Swiss Radiation Oncology annual meeting Poster First FLASH protons irradiations in Switzerland at PSI Gantry 1 25.09.2020 virtual, Switzerland Psoroulas Serena;
Joint AAPM-COMP meeting Poster Clinical Proton Pencil Beam Scanning Gantry as a Test Bench for the FLASH Effect 12.07.2020 virtual, United States of America Nesteruk Konrad Pawel;

Communication with the public

Communication Title Media Place Year
Media relations: radio, television Krebsforschung: Revolution dank Flash-Therapie? Radio SRF1 German-speaking Switzerland 2020
New media (web, blogs, podcasts, news feeds etc.) New technique for ultrafast tumour therapy PSI press release German-speaking Switzerland International 2020
Media relations: radio, television PSI-Forscherin Dr. Ulrike Kliebsch über die möglicherweise revolutionäre neue Krebstherapie Regionaljournal Aargau Solothurn, SRF3 German-speaking Switzerland 2020

Associated projects

Number Title Start Funding scheme
200882 High and ultra-high dose-rate delivery in a clinical proton therapy setting 01.03.2022 Project funding


Tumour treatment with protons is a form of radiation therapy in which the better localization of the dose in the target volume (Bragg peak) is exploited. In comparison to conventional radiotherapy, this feature allows to better spare the healthy tissue. The current standard procedure to deliver proton therapy is the so-called pencil beam scanning (PBS), in which the tumour volume is irradiated sequentially with the Bragg peak at different positions and energies. It is only a few years since there has been experimental evidence that in addition to the dose level also the dose rate has a biological effect. So-called FLASH irradiations with similar dose but much high dose rates show the same tumour control in the target volume but a better preservation of the healthy tissue. At PTCOG58 in 2019, the most important conference for proton therapy, FLASH irradiation was among the most discussed topics with many contributions. The challenges from a technical point of view are the generation of high proton current and the application of FLASH using the PBS technique. We want to investigate these technical questions within the framework of this project. Thanks to a clinical proton irradiation room with a gantry that is no longer in operation since a few months, we have the unique prerequisites and opportunity in our organization to test and investigate these questions in practice. Since the system is an in-house development, we have great flexibility and can carry out modifications rather easily. In particular, the following questions will be examined in context of this project:•Can the high proton beam current of a cyclotron be exploited by means of local proton energy modulation as it is already available on the gantry?•How can the applied dose be precisely measured and controlled at massively higher dose rates?•What effects do local energy modulation and the FLASH regime have on the characteristics of proton beam?With the help of local energy modulation on the gantry, we expect to achieve dose rates up to one order of magnitude higher than the reported threshold for the FLASH regime. This will allow us to further experimentally investigate the FLASH effect for proton therapy in the future. This includes in-vitro experiments in radiation biology as well as in-vivo investigations with small animals. Ultimately, even a human application is not excluded. This opens up the possibility for Switzerland to play again a leading role in the development of proton therapy.Over the last years, a certain saturation has been observed in the development of radiation therapy. The FLASH effect could be the key initiator to further improve the effectiveness beyond what is now state-of-the-art.