Project

Back to overview

Nanoscale 3D Printed Lithium Ion Battery: Towards a Revolution in Energy Storage

English title Nanoscale 3D Printed Lithium Ion Battery: Towards a Revolution in Energy Storage
Applicant Momotenko Dmitry
Number 190211
Funding scheme Spark
Research institution Laboratory of Biosensors and Bioelectronics Institute for Biomedical Engineering University and ETH Zurich
Institution of higher education ETH Zurich - ETHZ
Main discipline Physical Chemistry
Start/End 01.12.2019 - 30.11.2020
Approved amount 99'880.00
Show all

All Disciplines (2)

Discipline
Physical Chemistry
Electrical Engineering

Keywords (6)

Lithium ion battery; nanotechnology; 3D printing; electrochemistry; nanoprinting; energy storage

Lay Summary (German)

Lead
Eine der grössten technologischen Herausforderungen von heute ist die effiziente Speicherung von elektrischem Strom für mobile Anwendungen, einschliesslich Elektrofahrzeuge, tragbare elektrische Geräte wie Smartphones, Laptops und Wearables, sowie funktionierende medizinische Implantate und Robotersysteme. Die Nachteile der derzeitigen wiederaufladbaren Lithium-Ionen-Batterietechnologien, welche in diesen Anwendungen am häufigsten zur Energiespeicherung eingesetzt werden, gehören zu den herausforderndsten limitierenden Faktoren, welche weitere technologische Entwicklung in diesen Bereichen derzeit behindern.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Dieses Projekt zielt darauf ab, neue Ansätze zur Herstellung von Batterien zu entwickeln. Insbesondere soll die Gültigkeit kleiner 3D-Druckverfahren überprüft werden, um Batterieelektroden mit einer 1000-fach höheren Leistung als die derzeitige Technologie herzustellen. Dementsprechend sind die Projektziele: (i) Weiterentwicklung der 3D-Drucktechniken für das Drucken im Nanobereich; (ii) die Möglichkeiten zur Lithiierung der gedruckten Elektrodenmaterialien zu validieren; (iii) Testen der Effizienz des 3D-Designs und der Elektrodenmaterialien auf die Leistung der Batterie.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Dieses Projekt vereint Ingenieurwissenschaften mit physikalischen und chemischen Naturwissenschaften, wodurch das Projekt Einfluss auf ein breites Forschungsspektrum hat. Die Methoden, welche in diesem Programm entwickelt werden, werden neuartige nanotechnologische Werkzeuge für den 3D-Druck mit zahlreichen Anwendungen in der Elektrotechnik und Sensortechnologie generieren. Darüber hinaus werden die neuen Erkenntnisse zu Batteriedesign und -materialien Auswirkungen auf die Entwicklung leistungsfähiger Geräte zur effizienten Energiespeicherung haben.

Direct link to Lay Summary Last update: 09.12.2019

Lay Summary (English)

Lead
One of the greatest technological challenges of today is efficient storage of electrical power for mobile applications, including electric vehicles, portable electrical equipment, such as smartphones, laptops and wearables, as well as functional medical implants and robotic systems. Drawbacks of current rechargeable lithium ion battery technologies, which are the most widely used for energy storage in these applications, are among the most challenging limiting factors that hinder further technological development in these areas.
Lay summary

Aims of the research project at the start of research

This project aims to develop new approaches to battery fabrication. In particular, the aim is to check the validity of small-scale 3D printing methods to produce battery electrodes with 1000-times higher performance than the current technology. Accordingly, the project goals are: i) to advance 3D printing techniques for printing at the nanoscale; (ii) to validate the possibilities for lithiation of the printed electrode materials; (iii) to test the efficiency of the 3D design and electrode materials on the performance of the battery.

Scientific and societal context of the research project

This project brings together engineering, physical and chemical sciences, which sets up the project to impact in a broad research context. The methodologies that will be developed in this programme will generate novel nanotechnological tools for 3D printing with numerous further application in electronics and sensor technology. Furthermore, the new insights on battery design and materials will have an impact on the development of devices with enhanced performance for efficient energy storage.

Direct link to Lay Summary Last update: 09.12.2019

Responsible applicant and co-applicants

Publications

Publication
Bringing Electrochemical Three-Dimensional Printing to the Nanoscale
Hengsteler Julian, Mandal Barnik, van Nisselroy Cathelijn, Lau Genevieve P. S., Schlotter Tilman, Zambelli Tomaso, Momotenko Dmitry (2021), Bringing Electrochemical Three-Dimensional Printing to the Nanoscale, in Nano Letters, 21(21), 9093-9101.

Abstract

One of the greatest technological challenges of today is efficient storage of electrical power for mobile applications, including electric vehicles, portable electrical equipment, such as smartphones, laptops and wearables, as well as functional medical implants and robotic systems. Drawbacks of current rechargeable lithium ion battery technologies, which are the most widely used for energy storage in these applications, are among the most challenging limiting factors that hinder further technological development in these areas. These limitations are related to the planar two-dimensional design of the batteries, which limit their performance in terms of output power, capacity, energy density, geometrical form, footprint, size and weight. Ultimately, this leads to a situation, where the electrical device itself takes only a minor fraction of the final product, while most of its space and weight is occupied by the battery. For this reason, progress in a number of the future technological applications becomes challenging with the current state-of-the-art of batteries’ performance.This project is aimed to overcome these major limitations by a paradigm shift in the battery engineering: we propose to employ cutting-edge micro- and nanoscale 3D printing techniques to fabricate active battery materials, which will have a potential to result in hundred-to-thousand-fold improvement of capacity and specific power. In particular, we will fabricate high-aspect ratio metal features in a form of closely spaced interdigitated nanoscale pillar arrays, which will further be treated to form the active material for positive and negative electrodes of the lithium ion battery. The advantage of this strategy is an enormous increase of the surface area as well as the volume of the active material in the same footprint, allowing significant improvement of almost all of the important battery performance characteristics, including: (i) higher power due to higher current flow between closely spaced (down to only a few tens of nanometers) electrodes and, for similar reasons, (ii) faster charging, (iii) higher capacity due to a larger quantity of active material per volume, (iv) higher energy density, (v) smaller total weight due to reduction of inactive materials usage (current collectors, separators, etc.), and (vi) potentially improved stability and safety.The particular focus of this project is on the lithium ion battery technology, as this is currently among the most widely used for energy storage in portable applications mainly due to a relatively high energy density of the existing active materials. Herein, we will take advantage of localized electrodeposition of metals to create complex arrays of interdigitated free-standing features. For this, we will further advance 3D printing technology from sub-micrometer to a nanometer scale, and combine it with standard electrochemical treatment and microfabrication procedures. We will characterize the printed materials using state-of-the-art techniques and will evaluate the performance of the fabricated 3D microbatteries. When successfully achieved, these findings will provide a platform for further development of nanoscale technologies and materials for new batteries, and will serve as a proof-of-concept for larger research initiatives in the future. This will have a major impact in many technologies where lithium ion batteries are currently used, from mobile electronic devices to electric vehicles, therefore being of top importance for future technological development, thus also having broad economical and societal impact.
-