Back to overview


Applicant Zardo Ilaria
Number 189924
Funding scheme Sinergia
Research institution Departement Physik Universität Basel
Institution of higher education University of Basel - BS
Main discipline Interdisciplinary
Start/End 01.06.2020 - 31.05.2024
Approved amount 2'791'541.00
Show all

All Disciplines (6)

Condensed Matter Physics
Material Sciences
Electrical Engineering
Microelectronics. Optoelectronics
Theoretical Physics

Keywords (5)

Electrons; Hydrodynamic transport; Phonons; two-dimensional systems; Graphene

Lay Summary (Italian)

Poter capire e manipolare le correnti di carica e di calore ha un'importanza cruciale per le nuove tecnologie - ad esempio nella gestione termica dei dispositivi elettronici. Progressi recenti sia sperimentali che teorici hanno identificato le condizioni in cui le correnti si propagano idrodinamicamente, come fossero dei fluidi, invece che diffondere in modo caotico. Questo trasporto idrodinamico non solo ha suscitato grande entusiasmo nella comunità scientifica, ma implica grandi potenzialità tecnologiche nel controllare e guidare le correnti elettriche e di calore in modi molto più efficienti.
Lay summary

Soggetto e obiettivo

L'obiettivo di questo progetto è quello di capire e manipolare il trasporto di calore e carica nel regime idrodinamico. A tal fine sono necessarie una profonda conoscenza della scienza dei materiali e dell'ingegneria dei dispositivi, nonché nuovi modelli di trasporto computazionale e protocolli sperimentali.

Gli obiettivi specifici sono: 

  • sviluppo e applicazione di modelli teorici del trasporto idrodinamico per prevedere quantità e fenomeni chiave
  • sviluppo di protocolli sperimentali per la dimostrazione di effetti idrodinamici
  • controllo delle proprietà di materiali noti attraverso la loro strutturazione al fine di ottimizzare il trasporto idrodinamico
  • realizzazione di prove di principio di microdispositivi la cui funzione si basa su effetti di trasporto idrodinamici


Contesto socio-scientifico

Oltre a studi basati sulla fisica, questo progetto inizia a portare il tema ancora emergente del trasporto idrodinamico nelle scienze ingegneristiche, in particolare nella micro-fabbricazione e nell'ingegneria dei dispositivi. Inoltre, formeremo studenti in un'area di interesse emergente in un ambiente collaborativo, in modo che siano equipaggiati per carriere accademiche e industriali.

Direct link to Lay Summary Last update: 12.12.2019

Responsible applicant and co-applicants


Project partner

Associated projects

Number Title Start Funding scheme
134777 Nanoscale thermal and electrical characterization 01.05.2011 Project funding (Div. I-III)
182544 Hybrid Van der Waals heterostructures for vertical, permeable-base organic transistors 01.06.2019 Project funding (Div. I-III)
184942 Phonon Interference in nanostructures 01.04.2019 Project funding (Div. I-III)
179138 Accurate and efficient electronic-structure functionals for energies and spectra of materials 01.04.2018 Project funding (Div. I-III)
170741 Time resolved and stimulated Raman spectroscopy 01.12.2016 R'EQUIP
182892 NCCR MARVEL: Materials’ Revolution: Computational Design and Discovery of Novel Materials (phase II) 01.05.2018 National Centres of Competence in Research (NCCRs)
143636 Electrical and thermal transport from first-principles: Materials and devices 01.01.2013 Project funding (Div. I-III)
205334 Ultra high precision electron beam lithography system for nanodevice and nanostructures definition 01.01.2022 R'EQUIP


Hydrodynamic transport of heat or charge in solids is an exotic phenomenon, discovered more than 50 years ago for the case of coherent thermal transport (“second sound”), that has gained much prominence recently, due to its prediction and experimental observation in low-dimensional materials and nanostructures. While in most materials internal scattering processes lead to diffusive transport, pronounced anisotropy, low-dimensionality, or reduced temperatures can lead to hydrodynamic transport. These include coherent propagation of transport excitations, vortices in the viscous hydrodynamic transport, peculiar dependence on temperature or magnetic field, friction, slip and super-linear dependence of conductance as a function of width. Recent observations of hydrodynamic effects in 2D materials (graphene or 2DEGs) and in anisotropic 3D materials (PdCoO, SrTiO3, WP2) for both charge and heat are striking, deserve extensive microscopic understanding, and can lead to engineering novel devices. There are major open key questions addressed in this proposal: i. Theory and simulation: Several hydrodynamic transport regimes have been posited - from second sound and coherent transport waves to friction effects in nanostructures. Viscosities can now be predicted and provide a bridge between Boltzmann transport and Navier-Stokes hydrodynamics. ii. Materials science: To reach the hydrodynamic regime materials will have to be cleanly fabricated. There is no sufficient understanding of the role of defects or of the influence of substrates and boundaries on the emergence of the hydrodynamic regime. iii. Experimental physics: Certain hydrodynamic signatures are yet to be confirmed experimentally, others have been shown only once and need to be reproduced. Oftentimes, evidence of hydrodynamic transport has to be based on several different effects to be conclusive. Further, clean demonstrations need to be developed for the measurement of heat, which pose well-known methodological challenges. iv. Device engineering: Materials, for which a hydrodynamic transport regime is expected, often fall into the realm of future device applications for other reasons (e.g., topological protection, high electronic mobility, optoelectronic properties). It is unclear how future, scaled devices will either suffer from hydrodynamics, or can even exploit hydrodynamic transport for device functionality. These research questions motivate a synergetic approach combining these four areas of science by partnering of four research groups with leading expertise in all these areas. Furthermore, it is proposed to combine the study of hydrodynamic effects in both heat and charge transport to exploit obvious synergies, such as the important role of electron-phonon scattering. The project will create a theoretical framework to extract hydrodynamic parameters (e.g. the viscosity of a phonon system) from first principles. Materials will be grown and patterned to explore the limitations of designable hydrodynamic systems. Then, materials will be designed by layering and patterning of geometries to control hydrodynamic effects. Experiments will measure second-sound (pump-probe laser spectroscopy), non-local dissipation (scanning thermal microscopy), and quantify thermal, electrical and thermoelectric conductance and magnetoconductance of samples as a function of their dimensions. Finally, basic functional demonstration using 2-terminal and 3-terminal devices will be made showing rectification and drag-effects for heat and charge pumps.