Project
Back to overview
Show all
All Disciplines (2)
Microelectronics. Optoelectronics |
Keywords (6)
Unitraveling Carrier Photodiode; Sub-mm-waves; Photodiodes; THz Generation; High-Power Output; Millimeter-Wave Generation
Lay Summary (French)
Lead
|
LeadLes Photodiodes Unipolaires (Unitravaling Carrier Photodiodes, ou UTC-PDs) sont plus rapides que les diodes PIN traditionelles car elles n`impliquent pas le transport de porteurs de charges positives (trous). Cependant, pour obtenir une bonne puissance de sortie, les UTC-PDs traditionelles requièrent des gradation compositionelles qui augmentent la tension de claquage mais réduisent le courant maximal qui peut-être généré. Ce travail explorera l`utilisation du système GaAsSb-InP qui est libre des effets de blocage rencontrés dans les UTC-PDs traditionelles basées sur GaInAs.
|
Lay summary
|
Contenu et objectifs du travail de recherche De nouveaux alliages semiconducteurs seront explorés en visant une augmentation des largeurs de bande des UTC GaAsSb/InP en vue d`une éventuelle utilisation pour la génération de puissance à des fréquences de 200 à 400 GHz, voir jusqu`au régime THz.
Contexte scientifique et social du projet de recherche Certains des alliages envisagés n`ont jamais été évalués pour les photodiodes UTC: une certaine avancée scientifique y est garantie. Pour les applications potentielles on peut envisager les communication optiques/sans fil à très haut débit (10-100 Gbs) et/ou la génération d`ondes THz pour applications telles que sécurité ou contrôle de la qualité durant la production de médicaments en industrie pharmaceutique.
Keywords UTC-PD, MOCVD (metalorgfanic chemical vapor deposition), InP (Phosphure d`indium), GaAsSb (arsenure-antimoniure de gallium), photo-generation.
|
Responsible applicant and co-applicants
Employees
Associated projects
Number |
Title |
Start |
Funding scheme |
169413
|
ULTIMATE: Upper Limit Technology Investigations Mandatory to Attain Terahertz Electronics |
01.02.2017 |
Project funding |
169738
|
Surfactant-Assisted Growth of Pseudomorphic InAs Channels for Ultralow Low-Noise Cryogenic Electronics |
01.11.2016 |
Project funding |
Abstract
Unitraveling Carrier Photodiodes (UTC-PDs) provide improved photoresponses and bandwidths compared to conventional PIN photodiodes because UTC-PDs only rely on the motion of faster moving electrons through the photodiode depletion region by shifting light absorption to the p-contact region. The temporal response of the photogenerated slow-moving hole charge carriers corresponds to the dielectric relaxation time in the p-contact, and is short with respect to the electron transit time and diode RC time constant. The key remaining problem is then transferring the photo-generated electrons to a wider energy gap high-field drift collector.In conventional UTC-PDs on InP, photon absorption takes place in a p-type Ga0.47In0.53As layer: some form of compositional grading is required to ease electron transport from GaInAs to the InP drift collector (see Fig. 3 on p. 3 below). Under high optical excitation, the space charge of traveling electrons collapses the junction electric field and the photocurrent drops due to blocking associated with the (“Type-I”) band alignment between GaInAs and InP: even when grading is used, electrons experience an opposing quasi-electric field when bands are flattened by optical excitation. In contrast, a Ga(In)AsSb absorber with a “Type-II” (staggered) alignment to InP allows easy electron injection into InP even under zero-bias conditions. Theoretical computations at ETHZ, and simulations in the literature, show the “Type-II” system to be the optimal solution for the realization of high-output UTC-PDs. The PI`s Group has shown that InP/GaInAsSb Double Heterojunction Bipolar Transistors (DHBTs) feature higher fT cutoff frequencies than GaInAs-based DHBTs, demonstrating several advantages of the “Type-II” system which will carry over to the UTC-PD realization due to their physical commonalities with DHBTs.Significance: UTC-PDs are key enabling components in the photomixing generation of sub-mm wave to THz output with applications ranging from as >100 Gbit/s wireless communications to sensing/measurement in the health, pharmaceutical, scientific, and security domains (see Section 2.1b, p. 6). Considering the difficulty of generating signal power at sub-mm and THz frequencies, a fundamentally different UTC-PD relying on a favorable band alignment is a compelling and original alternative to fighting nature to transfer electrons from GaInAs to InP, as done in other approaches. From a purely scientific perspective, the proposed research will yield information on the physical properties of the little-studied GaInAsSb alloy grown lattice-matched to InP.Methods / Milestones / Output: Vertical absorption, top-illuminated Ga(In)AsSb/InP -based UTC-PDs will be grown by MOCVD and fabricated in the ETHZ FIRST Laboratory. The devices will be characterized by dark I-V measurements as well as for frequency response under various levels of optical excitation. The first objective is to demonstrate higher-power output and wider bandwidths than state-of-the-art results for comparatively-sized conventional “Type-I” GaInAs devices by properly designing the GaInAsSb absorber. Next, plasmonically-enhanced top contacts consisting of subwavelength grids or meshes/gratings will be exploited to maximize light absorption in thinner GaInAsSb absorber layers. Device performance will be characterized using lightwave analyzers up to 67 GHz in the applicant`s laboratory (for larger PDs), as well as by THz time domain spectroscopy (TDS) in one of several ETHZ TDS facilities to characterize the response of smaller area UTC-PDs (3-5 µm diameter) integrated with on-chip broadband antennae (bow-tie, log-periodic) well into the THz domain of frequencies.
-