Back to overview

Brushing Bacteria: Polymer Brush Coatings for Bacteria Free Drinking Water

Applicant Salentinig Stefan
Number 186251
Funding scheme Resource not found: '73db8922-9c9a-4c27-a5dd-3e7f63f62a65'
Research institution Département de Chimie Université de Fribourg
Institution of higher education University of Fribourg - FR
Main discipline Physical Chemistry
Start/End 01.09.2020 - 31.08.2023
Approved amount 249'586.00
Show all

Keywords (7)

Antimicrobial surfaces; Confocal Raman microscopy; SAXS; Molecular dynamics; Water purification; Drinking water; Self-assembly

Lay Summary (German)

Kontaminiertes Trinkwasser ist mitverantwortlich für den Tod von 1,5 bis 2,4 Millionen Menschen weltweit und verursacht bei weiteren Millionen Menschen ernsthafte Erkrankungen. In Entwicklungsländern haben mehr als 3 von 10 Menschen keinen Zugang zu sauberem Trinkwasser. Eine Hauptursache dafür sind Bakterien aus der Umgebung, die ins Trinkwasser gelangen. Diese Bakterien können an den Oberflächen der Leitungen oder Aufbewahrungscontainern adsorbieren und dort sogenannte Biofilme bilden, in denen Bakterien für Desinfektionsmittel nicht erreichbar sind. Diese Biofilme sind oft nur mit sehr giftigen Chemikalien zu entfernen, die wiederum für die Umgebung bedenklich sind.
Lay summary

Unser Hauptziel in diesem bilateralen Schweiz-Brasilien Projekt ist das bessere Verständnis antimikrobieller Oberflächen, insbesondere für die Trinkwasserversorgung. Dazu verfolgen wir einen interdisziplinären Ansatz mit einer Kombination aus experimentellen und theoretischen Methoden sowie Know-how aus der Biophysik, Oberflächen- und theoretischen Chemie, Mikrobiologie und Wasserforschung. Im Detail gehen wir wie folgt vor: (i) Synthese von antimicrobiellen Oberflächen basierend auf antimicrobiell wirksamen polykationischen und polyzwitterionischen Polymerketten. (ii) Systematische Studie der Interaktion von Bakterienmembran-Komponenten mit dieser Oberfläche, um den Mechanismus aufzuklären, der zur Zerstörung der Membran-Barriere führt. (iii) Identifikation der essentiellen Parameter. (iv) Optimierung der antimikrobiellen Oberflächen mit Fokus auf die Trinkwasserversorgung.

Direct link to Lay Summary Last update: 09.07.2020

Responsible applicant and co-applicants

Gesuchsteller/innen Ausland


Name Institute

Project partner


Antimicrobial peptide induced colloidal transformations in bacteria-mimetic vesicles: Combining in silico tools and experimental methods.
RVM Freire, Y Pillco-Valencia, da Hora GCA, M Ramstedt, L Sandblad, TA Soares, S Salentinig (2021), Antimicrobial peptide induced colloidal transformations in bacteria-mimetic vesicles: Combining in silico tools and experimental methods., in Journal of colloid and interface science, 596, 352.


Group / person Country
Types of collaboration
Prof Ramstedt / University of Umea Sweden (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Soarez / University of Sao Paulo Brazil (South America)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Research Days of Unifr and HEIA-FR “Chemistry, Materials and Polymers” Talk given at a conference Nature-inspired antimicrobial lipid surfaces for food applications 15.09.2021 Fribourg, Switzerland Salentinig Stefan;
First year graduate student symposium at Uni Bern Talk given at a conference Antimicrobial Polymer Brushes 13.08.2021 Bern, Switzerland Tran Bettina;

Knowledge transfer events

Active participation

Title Type of contribution Date Place Persons involved
Wissenschaftliche Aspekte der Biozidfreien Desinfektion Talk 16.09.2021 Berlin, Germany Salentinig Stefan;

Associated projects

Number Title Start Funding scheme
198110 600 MHz Nuclear Magnetic Resonance Spectrometer 01.03.2021 R'EQUIP
169513 NANOTAP: NANO-carriers for Tailoring Antimicrobial Peptides for the Fight Against Bacteria 01.01.2017 Project funding (Div. I-III)


Contaminated drinking water leads to the death of 1.5 - 2.5 million people per year worldwide and to severe illness for hundreds of million people. Bacteria from the environment are a major source of drinking-water-related diseases, including diarrheal diseases and opportunistic infections. Bacteria in water adsorb onto solid surfaces of distribution and storage containers, where they can form or integrate into microbial biofilms. The global goal of this Swiss-Brazilian project is the design of effective antibacterial surfaces that prevent bacteria colonization and ideally even kill bacteria upon contact. By avoiding bacteria adhesion and biofilm formation, such materials may fundamentally improve safe drinking water supply. For this purpose, we target non-leaching polymer-based surface coatings that are anti-adhesive for bacteria or have antibacterial activity. The main mechanism of action is based on membrane interactions, such as physical lysing, charge disruption or repulsion. However, the mechanisms at play that lead to bacteria repulsion and killing are difficult to determine and are largely unknown. In this collaborative project, particular attention will be given to the in-depth characterization of the physico-chemical properties and how they link to molecular level functions repelling and/or destroying the bacteria membrane barrier. A combination of highly contemporary experimental and computational methods will be used to understand and design these materials. These methods are only available within this partnership: The Swiss group brings in the know-how in polymer and biomolecule self-assembly and its characterization of bacteria interactions; the Brazilian group has the complementary expertise in molecular-level computational simulations of the bacterial cell envelope and polymer brushes; and the Swedish collaborator the knowledge on the bacteria membrane and biofilm chemistry. This integrated experimental-computational approach will allow the in-depth understanding of bacteria-surface interactions and assist the rational design of advanced surfaces for drinking water storage and transport applications. We anticipate that our findings will be of application in biofouling processes as whole (e.g. environmental, blood serum). The optimized simulation capabilities from this project may further streamline the selection of polymers for tailor-made antimicrobial surfaces and materials of the future.