Project

Back to overview

Rewiring starch metabolism for plant environmental adaptation

English title Rewiring starch metabolism for plant environmental adaptation
Applicant Santelia Diana
Number 185241
Funding scheme Project funding
Research institution Institut für Integrative Biologie Departement Umweltsystemwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Biochemistry
Start/End 01.10.2019 - 30.09.2023
Approved amount 588'000.00
Show all

All Disciplines (2)

Discipline
Biochemistry
Molecular Biology

Keywords (14)

GWAS; b-amylase; Yeast One Hybrid; ABA and CO2 signaling; Sugar transport; Chromatin Immunoprecipitation; Starch metabolism ; Light signaling; Protoplast transactivation assays; Adaptive phenotypic plasticity; Abiotic stress; NanoSIMS; Stomatal guard cells; Arabidopsis

Lay Summary (Italian)

Lead
L’amido e’ una delle piu’ abbondanti forme di riserva di carboidrati. L’amido nelle foglie e’ normalmente sintetizzato durante il giorno e degradato durante le notte per sostenere il metabolismo e la crescita della pianta quando la fotosintesi non e’ attiva. La sintesi e la degradazione dell’amido sono molto sensisibili ai cambiamenti nell’ambiente esterno e presentano delle caratteristiche specifiche a seconda del tipo di cellula e tessuto in cui l’amido si trova. L’obiettivo di questa ricerca è di scoprire nuovi meccanismi coinvolti nella regolazione della sintesi e degradazione dell’amido nelle foglie e nelle cellule di guardia della pianta in risposta a diversi stimoli ambientali, nonché la sua influenza sulla produttività della pianta e la tolleranza a stress.
Lay summary

L’amido è sintetizzato nel plastidi dei tessuti fotosintetici e non fotosintetici, ma il suo metabolismo e la sua funzione dipendono del tipo di tessuto in cui l’amido si trova e dalle condizioni ambientali esterne. Nelle cellule di guardia che circondano i pori stomatici che controllano lo scambio di acqua ed anidride carbonica con l’ambiente esterno, l’amido viene mobilizzato nel giro di pochi minuti, cosi’ aiutando a generare acidi organici e zuccheri che promuovono l’incremento del turgore cellulare e l’apertura degli stomi. Nel resto della foglia, l’amido si accumula generalmente durante il giorno e viene metabolizzato durante la notte per sostenere il metabolismo della pianta. In responsa  a stress osmotico, le piante degradano molto rapidamente l’amido per generare zuccheri solubili che funzionano come protettori osmotici limitando gli effetti negativi dello stress sulla crescita e la produttività della pianta.

Il nostro obbiettivo è di identificare nuovi meccanismi coinvolti nella regolazione della sintesi e degradazione dell’amido nelle foglie e nelle cellule di guardia della pianta in risposta a diversi stimoli ambientali, nonché l’influenza dell’amido sulla produttività della pianta e la tolleranza a stress. Per raggiungere questo obiettivo, faremo uso di tecniche moderne, come per esempio Genome-Wide-Association Studies (GWAS) o Namometre-scal Secondary Ion Mass Spectrometry (NanoSIMS). Poiché i repentini cambiamenti climatici che osserviamo oggigiorno diventeranno sempre più frequenti in futuro, la nostra ricerca aiuterà a selezionare genotipi di pianta che mostreranno una migliorata capacità di sopravvivere in diversi ambienti, mantenendo così la produttività agricola anche in caso di condizioni climatiche estreme.

Direct link to Lay Summary Last update: 11.07.2019

Responsible applicant and co-applicants

Employees

Project partner

Associated projects

Number Title Start Funding scheme
147074 Transcriptional and post-translational regulation of Arabidopsis b-amylase 1 during drought stress 01.05.2013 Project funding
200184 Biotinkering for Youth 01.04.2021 Agora
166539 Mechanistic insights into the adaptive plasticity of plant starch metabolism 01.08.2016 Project funding
204459 Genetic, metabolic, and ecological investigations of nectar production within the Brassicaceae 01.11.2021 Project funding

Abstract

Plants need to cope with a huge variety of abiotic and biotic environmental conditions that may change in time, intensity, and quality. The response of a plant to challenging environmental conditions can take many forms, ranging from changes in physiology to alterations of morphology. This variation in phenotypic expression is defined as “phenotypic plasticity” - the ability of a single genotype to exhibit a range of phenotypes in response to changes in the environment via any combination of transcription, translation, enzyme, and hormone regulation. If adaptive, phenotypic plasticity fosters plant environmental tolerance and survival. Compiling evidence indicates that phenotypic plasticity of plant starch metabolic dynamics in different tissues and conditions play a central role in plant’s adaptive responses to maintain growth and productivity under any environment. The plasticity of starch dynamics results from a complex interplay between regulatory and signaling pathways, the details of which we are just beginning to uncover. The overarching AIM of this SNSF grant is to provide novel insights into the molecular mechanisms of starch phenotypic plasticity within the photosynthetic cells of green leaves of Arabidopsis (i.e. mesophyll and guard cells), where starch metabolism play multiple, adaptive functions promoting plant growth and tolerance to abiotic stress. The proposed research is structured into three main subprojects, each aiming to understand the integrated regulation of the processes leading to the rewiring of starch metabolism. Subprojects 1 and 2 will take unbiased approaches (yeast one hybrid screens and genome-wide association studies, respectively) to search for novel and potentially unsuspected factors controlling starch turnover. Subproject 3 will apply Nanometre-scale Secondary Ion Mass Spectrometry (NanoSIMS) to investigate the molecular mechanism, regulation and function of starch biosynthesis in stomatal guard cells, about which we currently know surprisingly little. In combination with stable isotopic labeling and scanning electron microscopy, NanoSIMS imaging will permit to follow in situ the dynamics of carbon fluxes in single guard cells, something that has never before been possible. Our preparatory work already showed that this is highly feasible research, which builds on the latest achievements of my group, supported by the exceptional collaboration network, which I have established for this project. When combined with the wealth of genetic and molecular resources that have been previously developed in my laboratory, or that will be generated in parallel, we will make major advances in our understanding of the intricate process that have permitted plants to adapt and survive the harsh of its surrounding environment. Because environments that are now rare will likely become increasingly common in the future, selecting for increased plasticity will improve the performance of genotypes across environments, maintaining agricultural and forestry productivity even under extreme conditions.
-