Back to overview

Design principles for supported electrocatalysts: a look at the mesoscale

English title Design principles for supported electrocatalysts: a look at the mesoscale
Applicant Arenz Matthias
Number 184742
Funding scheme Project funding (Div. I-III)
Research institution Departement für Chemie, Biochemie und Pharmazie Universität Bern
Institution of higher education University of Berne - BE
Main discipline Physical Chemistry
Start/End 01.06.2019 - 31.05.2023
Approved amount 843'027.00
Show all

All Disciplines (2)

Physical Chemistry
Material Sciences

Keywords (4)

electrocatalyst design; mesoscopic properties; electrocatalysis; energy conversion

Lay Summary (German)

Der steigende Anteil von regenerativen Energiequellen wie Photovoltaik und Windenergie, welche Strom produzieren eröffnet neue Chancen, erfordert allerdings auch neue Technologien. Die Produktion des Stroms schwankt und muss über Speichertechniken an den Bedarf angepasst werden. Die Batterietechnik macht zwar Fortschritte, ist aber für die Speicherung grosser Mengen nicht geeignet. Vielversprechender, aber auch weniger weit entwickelt ist die Speicherung von elektrischer Energie in Form von Energieträgern wie Wasserstoff, bzw. die direkte Umwandlung von Strom und Rohstoffen wie CO2 in wertvolle Grundstoffe. Für diese Art der Energieumwandlung ist insbesondere Elektrokatalyse sehr geeignet.
Lay summary

Das übergeordnete Ziel unseres Projekts ist es, zu einem besseren Verständnis beizutragen, wie verbesserte Elektrokatalysatoren auf einer mesoskopischen Längenskala designt werden können. In der Regel konzentriert sich die Forschung darauf diese Materialien auf einer atomaren Ebene zu verstehen und zu optimieren indem man die Zusammensetzung der aktiven Phase (dort wo die chemischen Reaktionen stattfinden zu optimieren). Allerdings spielt es auch eine grosse Rolle wie solche aktiven Phasen «untereinander kooperieren». Solche mesoskopischen Effekte sollen anhand von verschiedenen Energieumwandlungsprozessen untersucht werden mit den Fokus auch i) die Grundlegenden Eigenschaften der aktiven Phase, die Performance des jeweiligen Energieumwandlungsprozesses und der Stabilität der aktiven Phase.

Direct link to Lay Summary Last update: 11.04.2019

Responsible applicant and co-applicants



In the last decade the interest in electrocatalyst design has been boosted by the increasing availability of regenerative energy in the form of electricity, in particular photovoltaic power and wind energy. The intermittent nature of these energy sources requires suitable energy storage technology to be able to align the “production” with the “demand” of energy. While battery technology for mobile applications shows continuous progress, the storage and re-conversion of electricity in the form of energy carriers such as hydrogen gas still faces significant challenges. Complementing strategies to utilize renewable energy for the production of gases, liquids or chemicals of interest, summarized under the “Power to value” or “Power2X” label, are even more in their technological infancy. However, for an efficient regenerative energy management on a global scale such technologies are indispensable.For all these technologies a fundamental understanding and rational design of (electro-)catalysts, on which many surface reactions of interest take place, play an essential role. In state-of-the-art academic electrocatalyst design, the focus is on optimizing the surface structure of the catalyst on a nanometer scale. This design principle, however, only takes kinetic factors into account - which are important, but for not sufficient for catalytic applications. Furthermore, the electrocatalyst performance is determined at significant lower reaction rates than required for applications. We propose here a research program that focuses on a different, complementary design approach for supported electrocatalysts in order to optimize their properties. In supported electrocatalysts, the active phase consists of metal or alloy nanoparticles distributed over a conducting support, mostly carbon based. Our aim is to elucidate the role of mesoscopic properties - such as the interparticle distance on the support - for their performance in a comprehensive and systematic manner by combining electrochemical measurements with (ex-situ and in operando) spectroscopy and microscopy. Mesoscopic properties have so far received only little attention in academic electrocatalyst design, yet some few studies demonstrate that they bear significant potential for improving the electrocatalyst performance. A proof of concept has been our pioneering work on the particle proximity effect on size-selected Pt clusters. Different colloidal catalyst synthesis strategies developed by us, allow the investigation of mesoscopic effects with a significantly broader perspective.The project is divided into three complementary parts studying mesoscopic effects with regard to i) fundamental properties of electrocatalysts in an electrochemical environment, ii) their electrocatalytic performance for different energy conversion reactions, and iii) their degradation behavior. The investigations are performed under conditions, close to realistic applications and it is expected that a successful project will significantly broaden the perspectives and design principles of supported electrocatalysts.