Project

Back to overview

Gas Diffusion Electrodes and Flow Cells for Photoelectrochemical Fuel Synthesis from Carbon Dioxide

Applicant Rahaman Motiar
Number 184483
Funding scheme Early Postdoc.Mobility
Research institution Department of Chemistry University of Cambridge
Institution of higher education Institution abroad - IACH
Main discipline Physical Chemistry
Start/End 01.04.2019 - 30.11.2020
Show all

Keywords (6)

Gas Diffusion Photocathode; Solar Fuel; Flow Cell; Operando Spectroscopy; Photoelectrochemistry; Heterogeneous Catalysis

Lay Summary (German)

Lead
Brennstoffe aus Kohlendioxid (CO2) mit Unterstuetzung von Sonnenlicht und Wasser: Eine effiziente und vielversprechende Energieloesung fuer die nahe Zukunft.
Lay summary
Die Ursache fuer den stetigen Anstieg der atmosphaerischen CO2-Konzentration ist heutzutage anthropogener Natur, wie beispielsweise durch die Foerderung fossiler Brennstoffe und die Rodung der Waelder. So sollte der Umsetzung von CO2 besondere Aufmerksamkeit gewidmet werden, da es in Brennstoff umgewandelt werden kann. Fuer diese Konvertierung gibt es verschiedene Prozesse, unter all diesen hat die Foto-Elektrochemische-Reduktion von CO2 in Brennstoff in den letzten Jahrzehnten grosses Interesse geweckt, da es direktes Sonnenlicht verwendet. Da CO2 ein aeusserst stabiles Molekuel ist, ist ein effizienter Katalysator notwendig um den Prozess zu beschleunigen. Das Konzipieren und Entwickeln eines solchen foto-katalytischen Materials ist essentiell fuer diese Forschung. Der Prozess der Foto-Elektrochemischen-CO2-Umwandlung ist eingeschraenkt durch die Langzeit-Stabilitaet, Selektivitaet der Produkte und schlechter Produktionsrate. Das Ziel dieses Projekts ist die Entwicklung neuer Methoden um diese Barrieren zu Ueberwinden. Erstmals werden in diesem Projekt eine Glas-Fluss Zelle und eine Gas-Diffusions-Foto-Katode (GDP) fuer den Prozess eingesetzt. GDPs setzen sich aus verschiedenen Schichten zusammen: eine Diffusions-Schicht (TiO2), ein Licht-Sammelkomplex (Perowskites) und einem Co-Katalysator (Kupfer). Durch die Kombination einer Fluss-Zelle und eines GDP wird die Selektivitaet und Produktion erhoeht. Das Zielprodukt der CO2-Konvertierung ist Ethylen (C2H4). Mit operando Spektroskopie werden die Katalysator-Systeme geprueft und tragen zum Verstaendnis des Reaktionsweges bei. Massenproduktion von Solarbrennstoffen aus atmosphaerischem CO2 wuerde uns naeher zu einer nachhaltigen Oekonomie bringen und zur Schliessung des anthropogenen Kohlenstoffzyklus beitragen.
Direct link to Lay Summary Last update: 31.01.2019

Responsible applicant and co-applicants

Publications

Publication
Selective CO production from aqueous CO 2 using a Cu 96 In 4 catalyst and its integration into a bias-free solar perovskite–BiVO 4 tandem device
Rahaman Motiar, Andrei Virgil, Pornrungroj Chanon, Wright Demelza, Baumberg Jeremy J., Reisner Erwin (2020), Selective CO production from aqueous CO 2 using a Cu 96 In 4 catalyst and its integration into a bias-free solar perovskite–BiVO 4 tandem device, in Energy & Environmental Science, 13(10), 3536-3543.

Datasets

Dataset for "Selective CO production from aqueous CO2 using a Cu96In4 catalyst and its integration into a bias-free solar perovskite-BiVO4 tandem device"

Author Rahaman, Motiar; Andrei, Virgil; Pornrungroj, Chanon; Wright, Demelza; Baumberg, Jeremy J.; Reisner, Erwin
Publication date 14.10.2020
Persistent Identifier (PID) https://doi.org/10.17863/CAM.56420
Repository University of Cambridge data repository
Abstract
Porous dendritic copper-indium metal alloy foam catalysts are interfaced with a perovskite‖BiVO 4 tandem device for solar CO 2 -to-CO conversion under bias-free conditions using water as an electron donor.

Abstract

Aims of the proposalThe aim of this project is to advance technology for the transformation of solar energy into chemical energy, which is renewable and can be stored beyond the diurnal cycle. Initially, concentrated CO2 from industrial flue gases can be used, but atmospheric CO2 following capture and sequestration processes will be used as carbon source in the long-term. The development of catalysts is the most crucial part of this process as they are required to break stable C=O bonds (bond enthalpy: 800 kJ mol-1) with small energy penalties to selective products. The major objectives of this proposal are:i)Design of a novel photo-electrochemical flow cell that couples solar CO2 reduction to water oxidation.ii)Development of gas diffusion photocathode (GDP) based on a layer-by-layer electrode fabrication of mesoporous TiO2 scaffold, perovskite light harvester, and Cu nanomaterials co-catalyst. iii)Solar fuel synthesis from CO2: Production of C2H4 with high selectivity and efficiency.iv)Operando IR, Raman, and UV-Vis spectroscopy studies to monitor the catalyst’s chemical state as well as to monitor the reaction pathways.MethodsA custom-made glass/quartz flow cell will contain two compartments (cathode and anode) for solar CO2 reduction and O2 evolution processes. A continuous electrolyte flow will be given during the process. The catalyst for CO2 conversion will be prepared as a gas diffusion photocathode (GDP), where CO2 conversion process will occur on a solid-liquid-gas three phase interface. Layer-by-layer assembly of porous TiO2, photo-sensitizer, and copper co-catalyst materials will be accomplished to prepare GDP. C2H4 will be the target product from CO2 at the cathode. Operando IR Raman, and UV-Vis spectroscopy studies will be carried out to monitor the chemical state of the catalysts as well as to monitor the mechanistic pathways. Spectroscopy is a feedback loop to develop improved catalysts systems thus to perform the solar energy conversion process more efficiently. Expected results and impactA successful development of flow cell and GDP will be accomplished for the first time in photoelectrochemical application. The flow cell_GDP combination will be applied to avoid mass transport limitation and a large scale production of C2H4 from CO2 is expected at cathode. At anode, O2 evolution will occur through water oxidation. Efficient catalyst systems will be developed for both this processes which will be completely sunlight driven. Operando spectroscopic study will be helpful to get information about the chemical state of the catalyst as well as to have an idea about the mechanism of the process. A substantial generation of solar fuel would really be helpful for our society to become independent from the limited fossil fuels.
-