Project

Back to overview

Bottom-Up Marries Top-Down: Cutting-Edge Modeling for Environmental Assessments

Applicant Frömelt Andreas
Number 184267
Funding scheme Early Postdoc.Mobility
Research institution School of Civil and Environmental Engin. University New South Wales
Institution of higher education Institution abroad - IACH
Main discipline Other disciplines of Engineering Sciences
Start/End 01.02.2019 - 31.01.2020
Show all

All Disciplines (2)

Discipline
Other disciplines of Engineering Sciences
Other disciplines of Environmental Sciences

Keywords (9)

Environmental Assessments; Production Perspective; Regionalized Models; Environmentally-Extended Input-Output Models; Bottom-Up Modeling; Life Cycle Assessment; Top-Down Modeling; Consumption Perspective; Industrial Ecology

Lay Summary (German)

Lead
Die Vielseitigkeit von Produktionssystemen und Konsummuster stellt politische Entscheidungsträger vor grosse Herausforderungen, wenn gezielte Massnahmen zur Reduktion anthropogener Umweltauswirkungen ergriffen werden sollen. Trotz der Möglichkeiten der heutigen Datenanalyse (Machine Learning, Data Mining), sind bisherige Computermodelle oft zu grob, um politische Entscheidungen effizient zu unterstützen. Für die Erarbeitung erfolgversprechender Umweltmassnahmen, wären hochaufgelöste Informationen über lokale Arbeitsstätten und Haushalte eine wünschenswerte Planungsgrundlage.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Das Ziel unseres Projekts ist es, Computermodelle zu entwickeln, die basierend auf bestehenden Daten hochaufgelöste Informationen über lokale Konsummuster und Produktionssysteme generieren. Diese Informations- und Simulationsplattform soll zudem fähig sein, Auswirkungen von politischen Interventionen abzuschätzen. Der Hauptfokus wird dabei die Erstellung eines multiregionalen Input-Output-Modells für die Schweiz darstellen. Dieses systemweite auf makroökonomischen Grundsätzen basierte Modell (top-down) wird für die Abschätzung von Umweltprofilen von einzelnen Wirtschaftssektoren (oder Arbeitsstätten) verwendet und daraufhin mit einem hochaufgelösten Konsummodell (bottom-up) verbunden, das den Umweltfussabdruck von einzelnen Haushalten in einer Region quantifizieren kann.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Die in diesem Projekt entwickelten Computermodelle simulieren Umweltprofile von lokalen Akteuren und sollen ökologische und ökonomische Effekte von Umweltmassnahmen abschätzen. Die Verschmelzung unterschiedlicher Ansätze (top-down und bottom-up) sowie die Kombination von ökonomischen Modellen und Ökobilanzierung hat nicht nur das Potential politische Entscheidungsträger zu unterstützen, sondern wird auch im Generellen neue Erkenntnisse für modellgestützte Nachhaltigkeitsstudien liefern.

Direct link to Lay Summary Last update: 24.12.2018

Responsible applicant and co-applicants

Publications

Publication
Quantifying carbon flows in Switzerland: Top-down meets bottom-up modelling
Froemelt Andreas, Geschke Arne, Wiedmann Thomas (2021), Quantifying carbon flows in Switzerland: Top-down meets bottom-up modelling, in Environmental Research Letters, 16(1), 014018.
A two-stage clustering approach to investigate lifestyle carbon footprints in two Australian cities
Froemelt Andreas, Wiedmann Thomas (2020), A two-stage clustering approach to investigate lifestyle carbon footprints in two Australian cities, in Environmental Research Letters, 15(10), 1-19.
Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts
Froemelt Andreas, Buffat René, Hellweg Stefanie (2020), Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts, in Journal of Industrial Ecology, 24(3), 639-652.

Datasets

SUPPORTING INFORMATION: Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts

Author Froemelt, Andreas; Buffat, René; Hellweg, Stefanie
Publication date 24.11.2019
Persistent Identifier (PID) 10.1111/jiec.12969
Repository Journal of Industrial Ecology
Abstract
SUPPORTING INFORMATION accompanying the scientific article "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts" (Froemelt et al. 2020).

SUPPORTING INFORMATION: A two-stage clustering approach to investigate lifestyle carbon footprints in two Australian cities

Author Froemelt, Andreas; Wiedmann, Thomas
Publication date 09.10.2020
Persistent Identifier (PID) 10.1088/1748-9326/abb502
Repository Environmental Research Letters (IOP Publishing Ltd)
Abstract
SUPPORTING INFORMATION accompanying the scientific article "A two-stage clustering approach to investigate lifestyle carbon footprints in two Australian cities" (Froemelt & Wiedmann 2020).

SUPPORTING INFORMATION: Quantifying carbon flows in Switzerland: top-down meets bottom-up modelling

Author Froemelt, Andreas; Geschke, Arne; Wiedmann, Thomas
Publication date 06.01.2021
Persistent Identifier (PID) 10.1088/1748-9326/abcdd5
Repository Environmental Research Letters (IOP Publishing Ltd)
Abstract
SUPPORTING INFORMATION accompanying the scientific article "Quantifying carbon flows in Switzerland: top-down meets bottom-up modelling" (Froemelt et al. 2021)

Collaboration

Group / person Country
Types of collaboration
ISA, The University of Sydney Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
Sustainability Assessment Program, UNSW Sydney Australia (Oceania)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
WRC-Seminar at UNSW Individual talk Assessing Environmental Impacts of Household Consumption Behaviour 06.11.2019 Sydney, Australia Frömelt Andreas;


Abstract

In order to reduce environmental impacts of today’s consumption patterns and production systems towards sustainable levels, policymakers can assume a key role. By devising targeted policies, they can frame an environment which incentivizes more sustainable behaviors and make greener production favorable. However, individual consumers and producers act in completely different ways resulting in a large variability of environmental footprints. “One-size-fits-all”-solutions are thus likely to fail and policymakers are in need of highly resolved information to successfully implement policy interventions and to efficiently invest time and money in the most promising options of actions. Usually, existing studies and environmental assessments are too coarse to provide adequately tailored information for local policymakers. The most desired level of detail to investigate and understand prevailing consumption patterns and production systems would be to know the environmental footprints of individual households and enterprises located in a region. While data in this detail is not available, models can provide estimates as substitutes. In this regard, my own research has come up with a novel spatially resolved bottom-up consumption model which is able to derive a realistic environmental profile for each household in a region. Although the concepts of the model are generic, it was applied to Switzerland as a case study. Providing a consumption-based perspective, this model is lacking a production-oriented counterpart which assesses environmental impacts of local trade and industry.The goal of this project is to provide a thorough information base to support local policymakers in designing and prioritizing effective environmental policies and to provide a model platform to investigate effects of interventions. While the consumption perspective is already covered by my previous research efforts, this project will adopt a production view and amend the existing model with economic approaches. Thereby, the main focus will lie on establishing a multi-regional input-output (MRIO) model for Switzerland by means of the platform “Industrial Ecology Virtual Laboratory” (IELab). This combination of top-down approaches (input-output models) and my existing bottom-up models is located at the frontier of sustainability assessments of complex systems and will deliver new insights into mathematical modeling of environmental impacts on different regional scales. Moreover, the MRIO-model will enable for tracking environmental and economic flows within Switzerland and worldwide. It will also be a first approximation of a model to assess disaggregated production-based footprints. This approach can then be further pursued in order to estimate environmental footprints of individual enterprises in a region. Furthermore, the final model will be ready for coupling with macro-economic models (e.g. computable general equilibrium models) and will thus allow for investigating the direct and indirect system-wide effects of planned measures. This highly sophisticated simultaneous consideration of economic and environmental aspects has the potential to raise the bar in the research field of sustainability assessments. The combined final model will represent an information base with unprecedented detail on local actors within a certain region and it will constitute a comprehensive platform for understanding locally occurring consumption patterns and production systems as well as for estimating the effects of environmental policy scenarios. Furthermore, detailed analyses between features of households and the modeled results of their respective environmental consequences are possible and might identify interactions, trade-offs, and drivers of environmental impacts. In this regard, I will also apply our existing approaches to new consumption data to advance our understanding of today’s consumption patterns in an international context.
-