Project

Back to overview

Neuroprosthetic Platform for Personalized and Implantable Systems: Application to Reverse Paralysis and Restore Hearing

Applicant Lacour Stéphanie
Number 183519
Funding scheme Sinergia
Research institution Laboratoire des interfaces bioélectroniques flexibles EPFL - STI - IMT - LSBI
Institution of higher education EPF Lausanne - EPFL
Main discipline Interdisciplinary
Start/End 01.05.2019 - 30.04.2023
Approved amount 3'081'916.00
Show all

All Disciplines (5)

Discipline
Interdisciplinary
Neurophysiology and Brain Research
Surgery
Microelectronics. Optoelectronics
Material Sciences

Keywords (8)

microelectronics; system integration; hearing loss; neurosurgery; non human primates; soft materials; neuroprosthetics; spinal cord injury

Lay Summary (French)

Lead
Les traitements à base de neuroprostheses tels que les implants cochléaires ou les thérapies de stimulation cérébrale profonde ont changé la vie de millions de personnes. En dépit de ces succès notables, les percées technologiques de nouvelles interfaces neuronales restent souvent limitées aux démonstrateurs développés par la recherche académique et aboutissent rarement à de nouvelles thérapies.
Lay summary

Ce projet SNSF Sinergia propose d'établir une plate-forme multifonctionnelle dédiée au design, à la fabrication et évaluation de nouveaux systèmes implantables propices au développement de nouveaux traitements personnalisés et efficaces à base de neuroprosthèses. La nouvelle plateforme sera exploitée dans deux contextes thérapeutiques précis : la restauration des fonctions moteurs des membres inférieurs suite à une lésion de la moelle épinière, et la restauration de l’audition.

Dans une première phase, nous nous concentrerons sur le design et la fabrication des différents composants de notre plate-forme multifonctionnelle ainsi que la définition des bancs expérimentaux. Nous allons exploiter une nouvelle classe d'implants neuronaux souples dont la compliance favorise la biointégration. Les électrodes seront pilotées par de nouveaux circuits embarqués, sans fil, ultra-miniaturisés et efficaces au niveau énergétique.

Au cours de la deuxième phase, les nouveaux systèmes implantables seront validés dans des modèles in vitro multimodaux et évalués in vivo dans des modèles représentatifs des conditions cliniques.

Notre équipe interdisciplinaire associe des chercheurs et  ingénieurs des deux Ecoles polytechniques suisses (EPFL et ETHZ), de la plateforme de recherche en neuroscience translationnelle de Fribourg, de l'hôpital universitaire de Lausanne (neurochirurgie) et de la faculté de médecine de l’université de Harvard. 
Notre plate-forme multifonctionnelle a le potentiel de résoudre certains des obstacles technologiques qui entravent le développement et le déploiement de traitements à base de neuroprothèses personnalisées. Les traitements visant à restaurer la marche et à rétablir l'audition ont des conséquences médicales évidentes. Cependant, le spectre de traitements pouvant être conçus via notre plateforme s'étend au-delà de ces deux applications.
 

 

 

Direct link to Lay Summary Last update: 11.04.2019

Responsible applicant and co-applicants

Employees

Project partner

Publications

Publication
Dimensional scaling of thin-film stimulation electrode systems in translational research
Schiavone Giuseppe, Vachicouras Nicolas, Vyza Yashwanth, Lacour Stephanie P (2021), Dimensional scaling of thin-film stimulation electrode systems in translational research, in Journal of Neural Engineering.
An Energy-Efficient Low-Noise Complementary Parametric Amplifier Achieving 0.89 NEF
Atzeni Gabriele, Guichemerre Jeremy, Novello Alessandro, Jang Taekwang (2020), An Energy-Efficient Low-Noise Complementary Parametric Amplifier Achieving 0.89 NEF, in 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USAIEEE, Springfield, MA, USA.
A 0.45/0.2-NEF/PEF 12-nV/√Hz Highly Configurable Discrete-Time Low-Noise Amplifier
Atzeni Gabriele, Novello Alessandro, Cristiano Giorgio, Liao Jiawei, Jang Taekwang (2020), A 0.45/0.2-NEF/PEF 12-nV/√Hz Highly Configurable Discrete-Time Low-Noise Amplifier, in IEEE Solid-State Circuits Letters, 3, 486-489.

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
NER 2021 : International IEEE/EMBS Conference on Neural Engineering Poster Development and Proof of Concept of a Soft Auditory Brainstem Implant in Non-Human Primate 04.05.2021 virtual meeting, Switzerland Trouillet Alix; Lacour Stéphanie; Lee Daniel;
2021 Neural Control of Movement Annual Meeting Poster Neural population dynamics in premotor, motor, and, somatosensory cortices during locomotion in primates 20.04.2021 virtual meeting, Switzerland Bloch Jocelyne; MACELLARI Nicolo; Lacour Stéphanie; Courtine Grégoire; Urban Luke;
44th Association of Research in Otolaryngology MidWinter Meeting 2021 Talk given at a conference Soft Auditory Brainstem Implant: Proof of Concept in Non-Human Primates 20.01.2021 Orlando, FL, United States of America Trouillet Alix; Lacour Stéphanie; Lee Daniel;
44th Association of Research in Otolaryngology MidWinter Meeting 2021 Poster Comparison of Dorsal vs Ventral Cochlear Nucleus Responses to Amplitude Modulated Pulse Trains in a Mouse Model of the Auditory Brainstem Implant (ABI) [Abstract #T20] 20.01.2021 Orlando, FL, United States of America Lee Daniel; Lacour Stéphanie;
CNP retreat 2020 (EFFL) - best poster award Poster Neural basis of locomotor encoding in sensorimotor cortices 11.02.2020 Lavey-Les-Bains, Switzerland MACELLARI Nicolo; Courtine Grégoire; Bloch Jocelyne; Urban Luke;
43rd Annual Association of Research in Otolaryngology MidWinter Meeting 2020 Talk given at a conference Comparison of Responses to DCN or VCN Electrode Placements in a Mouse Model of the Auditory Brainstem Implant (ABI) [Abstract #PS579] 25.01.2020 San José, CA, United States of America Lee Daniel; Lacour Stéphanie;
2019 Biomedical Engineering Society (BMES) Annual Meeting Talk given at a conference Exploring the Neural Basis Underlying Locomotor Activities and Leg Reaching in Macaque Motor, Premotor, and Sensory Cortex 16.11.2019 Philadelphia,PA, United States of America Courtine Grégoire; Bloch Jocelyne; Urban Luke; MACELLARI Nicolo;
2019 Society for Neuroscience Annual Meeting Poster Exploring the Neural Basis Underlying Locomotor Activities and Leg Reaching in Macaque Motor, Premotor, and Sensory Cortex 19.10.2019 Chicago, IL, United States of America Urban Luke; MACELLARI Nicolo; Courtine Grégoire; Bloch Jocelyne;


Awards

Title Year
the 2020 International BCI Award 2020

Associated projects

Number Title Start Funding scheme
185214 Targeted amplification of the motor recovery engram following spinal cord injury 01.04.2019 Project funding
192558 An open-access single-cell atlas of spinal cord injury in zebrafish, rodents and primates 01.06.2020 Project funding
157800 Soft bioelectronics for bidirectional neural implants 01.03.2016 SNSF Consolidator Grants
160696 Electrochemical neuromodulation therapies to improve recovery after spinal cord injury 01.12.2015 Sinergia

Abstract

Background. Neuroprosthetic treatments such as cochlear implants or deep brain stimulation therapies have changed the lives of millions of people. Despite these notable successes, regulatory hurdles and technological limitations confine new neuroprosthetic treatments to proof-of-concepts in animal models. Likewise, technological breakthroughs in implantable neural interfaces that thrive in academic research remain limited to one-time demonstrators with restricted longevity and poor practicality. Our idea. We propose to establish a neuroprosthetic platform supporting the flexible design and fabrication of long-lasting, biocompatible, personalized and implantable neural systems that meet the specific requirements of a broad range of neuroprosthetic applications. We will illustrate the strength of this neuroprosthetic platform with two distinct applications: reversing paralysis and restoring hearing. Despite their obvious differences, these applications involve the assembly of similar basic components to control electrical stimulation protocols in real-time and wirelessly. The personalized and implantable neural systems will be validated in nonhuman primate (NHP) models of neurological disorders.Technological innovations. We will exploit a new class of soft neural implants termed electronic dura mater or e-dura that offer unique biomimetic compliance favoring long-term biointegration. Implants are fabricated using microfabrication techniques adapted to soft polymers, which allows the rapid personalization of electrode configurations and shapes. New connector concepts will enable interfacing the soft e-dura to semi-rigid PCB assemblies, wherein microchips, antenna, energy harvester/storage and NV memory will be embedded in hermetic membranes of liquid crystal polymers (LCP). The resulting implants will allow real-time control over complex temporal patterns of spatially selective electrical stimulation protocols through wireless links supporting ultra-fast response latencies. Therapeutic innovations. We selected two applications for which the personalization of implants will confer a clear added value. First, we will personalize computational models that inform on the optimal locations of electrodes to target the individual posterior roots of the spinal cord in each subject. These personalized e-dura implants will enable precise control over the muscle groups mobilizing each joint of the leg. Decoding of movement intentions from cortical activity will adjust targeted electrical stimulation protocols that restore various locomotor functions in an NHP model of spinal cord injury. Second, we will personalize e-dura implants to the convoluted surface of the auditory brainstem region. Innovative surgical approach will allow the targeted positioning of implants over the cochlear nucleus in order to deliver electrical stimulation that restores hearing after cochlear and auditory nerve dysfunction. Interdisciplinary consortium. Our team combines researchers from two Swiss institutes of technology, translational scientists operating within the newly created NHP research platform, and neurosurgeons from the university hospital in Lausanne and Harvard Medical School-thus spanning the entire breadth of technological, scientific and medical expertise necessary to achieve our goals. The crucial consensus of language, methods and organization necessary to conduct the proposed interdisciplinary research has already been established within the consortium through previous collaborations. Impact. Our neuroprosthetic platform has the potential to resolve many of the technological hurdles that impede the development and deployment of personalized neuroprosthetic treatments. Treatments to reverse paralysis and restore hearing have obvious medical impact. However, the spectrum of treatments that may be conceived through our platform expands way beyond these two applications.
-