Back to overview

Microwaves for coherent control of quantum matter and magnonic devices

Applicant Gerber Simon
Number 183304
Funding scheme R'EQUIP
Research institution Mikro- und Nanotechnologie Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Condensed Matter Physics
Start/End 01.12.2018 - 30.11.2022
Approved amount 168'840.00
Show all

Keywords (5)

Femtosecond x-ray scattering; Microwave generation; X-ray microscopy; Ultrahigh-resolution infrared spectroscopy; Pump-probe experiments

Lay Summary (German)

Das Projekt "Mikrowellen für kohärente Kontrolle von Quantenmaterie und Magnonischen Bauelementen" ermöglicht die Beschaffung von modernster Mikrowellen-Infrastruktur. Diese wird am Paul Scherrer Institut (PSI) zum Antreiben und Kontrollieren von neuartigen Materialien und elektronischen Bauelementen Geräte genutzt werden und ermöglicht damit die Entwicklung von zukünftigen Quanten and Magnonischen Technologien.
Lay summary
Inhalt und Ziel des Forschungsprojekts

In diesem Projekt wird modernste Mikrowellentechnologie zur Anregung und Kontrolle von physikalischen Effekten mit den Grossforschungs-Anlagen des Paul Scherrer Instituts (PSI) kombiniert. Diese Mikrowellen-Infrastruktur wird aus einem modularen tragbaren System bestehen, das über das PSI hinweg verwendet werden kann. Die Forschungsanwendungen sind zahlreich, werden sich aber vorerst auf zwei Gebiete konzentrieren: Magnonische Bauelemente und Quantenmaterialien/-technologien.

Die Kombination von hochfrequenten Mikrowellen und den verschiedenen Röntgenquellen des PSI, wird weltweit einzigartig sein und bildet eine perfekte Ergänzung zu traditionellen Anregungsquellen (optische Laser, Magnetfeld, Temperatur) von Festkörper Systemen.

Wissenschaftlicher und sozialer Kontext des Forschungsprojekts

Das allgemein bekannte "Moore'sche Gesetz", welches in den letzten 50 Jahren die Entwicklung von schnelleren und kompaktereren Computer vorangetrieben hat, wurde in den letzten 10 Jahren durch den "Moore's Gap" ergänzt. Letzterer steht für eine Abweichung vom Moore'schen Gesetz, welche die Tatsache hervorhebt dass herkömmliche Elektronik auf Siliziumbasis an ihre Grenzen stösst. Zur Entwicklung von schnelleren, leistungsfähigeren und effizienteren Komputer, müssen nach neuen physikalischen Prinzipien und Technologien gesucht werden. Dazu müssen die dynamischen Eigenschaften von Materialien und Bauelementen auf sehr kurzen Längen- (Nanometern) und Zeit-Skalen (Femto-Pico-Sekunden) verstanden werden. Quantentechnologien, Spintronik und Magnonik sind Forschungsgebiete, welche genau dies vorantreiben. Der Schlüssel liegt in der Fähigkeit Materialien und Bauelemente mit Mikrowellensignalen zu manipulieren und anzusteuern. Das aktuelle Projekt stellt diese Fähigkeiten am PSI sicher, damit die Grossforschungs-Anlagen des PSI in vollem Umfang genutzt werden können um diese nächste Generation von Technologien mitzuentwickeln.
Direct link to Lay Summary Last update: 12.12.2018

Lay Summary (English)

The ‘Microwaves for coherent control of quantum matter and magnonic devices’ project will deliver state-of-the-art microwave capabilities for driving and controlling novel materials and devices at the Paul Scherrer Institut (PSI), allowing the development of next generation quantum and magnonic technologies.
Lay summary

Content and goal of the research project

This project will install state-of-the-art microwave driving capabilities at the Paul Scherrer Institut’s (PSI) large-scale facilities. This will consist of a modular and portable system that can be used across PSI. The research applications are numerous, however within the scope of the project we will focus on two: magnonics and quantum materials/technologies.

The combination of microwave driving with the various x-ray sources available at PSI will be worldwide unique, and be a perfect compliment to more traditional means (lasers, magnetic field, temperature) of driving such systems.  

Scientific and social context of the research project

The well-known ‘Moore’s law’ that has guided the development of faster and more compact computers over the last 50 years has, in the last 10 years, been supplemented with ‘Moore’s Gap’, a deviation from this law that highlights the fact that conventional Silicon based electronics are reaching the limits of their capabilities. If we wish to continue to develop faster, more powerful and more efficient computing devices we need to look for new physical concepts and technologies.  To do this we must study and understand the dynamical properties of materials and devices on the very small length (nanometers) and very short time scales (femto-pico seconds) that this corresponds to. Quantum technologies, spintronics and magnonics are fields of research that try and do just this. Key to these fields is the ability to manipulate and drive materials and devices with microwave signals. This project will develop this capability at PSI ensuring its large-scale facilities can be fully exploited in the efforts to develop next generation technologies.

Direct link to Lay Summary Last update: 12.12.2018

Responsible applicant and co-applicants

Project partner

Associated projects

Number Title Start Funding scheme
155873 Quantum MAny-body Physics in Solids 01.08.2015 SNSF Starting Grants
166271 Nonlinear Probes of quantum localized systems 01.03.2017 Project funding
166298 Quantum Magnetism - Checkerboards, Skyrmions and Dipoles 01.06.2016 Project funding
179097 Electron-Donation for Superconductivity 01.01.2019 SNSF Professorships
172517 Topological multilayer spin textures for nanoscale magnon emission and propagation 01.03.2018 Project funding
189640 High-energy resolution spectrometer for SASE broadband Time-Resolved RIXS at Furka endstation 01.03.2021 R'EQUIP
177550 Terahertz spintronics and magnonics of ferro- and antiferromagnets 01.07.2018 ERA.Net RUS Plus
162671 Investigation of the quantum and vortex phases of CeCoIn5 at ultra-low temperatures 01.02.2017 Project funding


This project aims to install state-of-the-art microwave driving capabilities at the Paul Scherrer Institut’s (PSI) large-scale facilities. The proposed equipment will consist of a multi-channel, 65 GSa/s / 25 GHz arbitrary waveform generator (AWG) and a 43.5 GHz vector network analyser (VNA) that is compatible with frequency extenders up to the THz regime. While this will be a modular and portable system that can be used across PSI we focus here on its exploitation in two contexts:1). Magnonics is an area of rapidly growing interest with the potential to enable low-power, ultrafast electronics on the nanometre scale. The ability to deliver complex waveforms across multiple channels up to 10’s of GHz will enable high-frequency, non-linear and device-based studies. The ability to pump in the 100’s of GHz, paired with the capabilities of SwissFEL, will provide a unique opportunity to develop even faster THz magnonics. 2). Quantum technologies rely on the precise manipulation and measurement of quantum states. SwissFEL’s ultrafast hard x-ray pulses probe at the length and time scales required for the readout of such states in condensed matter systems. Pairing this with the proposed equipment’s ability to coherently excite charge-neutral excitations, such as phonons, magnons, crystal field excitations and spin/orbital degrees of freedom for defects in semiconductors, will place PSI and its user community at the forefront of the study of driven quantum materials.The synchronisation of microwaves lies at the heart of PSI’s accelerator-based large-scale facilities. Building on this experience to deliver the ability to pump, drive or “program” samples with the control afforded by cutting-edge electronics, and thereafter probe it with the suite of x-ray, infrared and neutron probes will enable a plethora of studies in material and device physics.