Project

Back to overview

Encoding, regulation and decoding of early plant receptor kinase signaling

English title Encoding, regulation and decoding of early plant receptor kinase signaling
Applicant Zipfel Cyril
Number 182625
Funding scheme Project funding
Research institution Abteilung Mikrobiologie Institut für Pflanzenbiologie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Biochemistry
Start/End 01.01.2019 - 31.12.2022
Approved amount 1'112'000.00
Show all

All Disciplines (5)

Discipline
Biochemistry
Genetics
Agricultural and Forestry Sciences
Botany
Molecular Biology

Keywords (7)

Signaling; Phosphatases; Plants; Receptor kinases; Innate immunity; Kinases; Phosphorylation

Lay Summary (German)

Lead
Pflanzen müssen ständig auf Signale aus ihrer Umwelt reagieren, um ihr Wachstum und ihre Entwicklung anzupassen. Es ist jedoch bisher nicht vollkommen klar, wie diese externe Information innerhalb der Pflanze übermittelt und auf molekularer Ebene dechiffriert wird. Dies zu verstehen, ist Ziel unserer Forschung.
Lay summary

Die Fähigkeit von Pflanzen ihre Umwelt wahrzunehmen und angemessen auf sie zu reagieren, ist überlebensnotwendig. Um sich gegen potenziell schädliche Mikroben zu verteidigen, verwenden Pflanzen Proteine an ihrer Zelloberfläche, die die Anwesenheit von körperfremden Molekülen erkennen. Diese Rezeptoren binden konservierte Moleküle mirobiellen Ursprungs und aktivieren so die angeborene Immunantwort. Die zugrundeliegenden Mechanismen sind dabei denen der menschlichen Immunabwehr sehr ähnlich. Interessanterweise besitzt ein Teil dieser Rezeptorproteine eine enzymatische Domäne (Kinasedomäne), die ihnen erlaubt, andere Proteine zu modifizieren. Auf diese Weise kontrollieren sie deren Aktivität, Akkumulation und/oder Lokalisation innerhalb der Pflanzenzelle. Unser Ziel ist es, zu verstehen, wie von der Kinasedomäne ausgelöste Modifizierungen entstehen und dann "dechiffriert" werden, um die molekularen Ereignisse in den Zellen in Gang zu setzen, die dann zur Etablierung der Immunantworten und damit zur Krankheitsresistenz führen. Da sich eine Überaktivierung von Immunantworten nachteilig auf das Pflanzenwachstum auswirken kann (ähnlich Autoimmunerkrankungen beim Menschen), werden wir auch untersuchen, wie diese Ereignisse kontrolliert werden. Bemerkenswert ist, dass die molekularen Mechanismen, die der pflanzlichen Immunabwehr zugrunde liegen, Ähnlichkeiten zu Mechanismen zeigen, die Pflanzenwachstum und -entwicklung sowie andere Stressantworten kontrollieren. Unsere Forschung wird uns so auch Aufschluss über sehr grundlegende Prozesse geben, die wichtige Aspekte des pflanzlichen Lebens kontrollieren. Daher kann diese Grundlagenforschung letztlich Basis zur Entwicklung von Applikationen sein, die die Getreideproduktion angesichts einer sich stetig wandelnden Umwelt verbessern.

Direct link to Lay Summary Last update: 15.10.2018

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
189340 ChitinOMix: A multidisciplinary project to understand the effect of chitin soil amendment on the plant response, natural microbial community and the fate of human pathogenic bacteria 01.08.2020 Project funding
200184 Biotinkering for Youth 01.04.2021 Agora

Abstract

Multicellular organisms employ cell-surface receptors to survey the extracellular environment and adapt to changing conditions. Receptor kinases represent one of the largest protein families in plants, where they perceive a wide range of endogenous and exogenous signals to control all aspects of plant life, from development and growth to environmental stress response. In particular, many receptor kinases act as pattern recognition receptors, which sense the presence of potential pathogenic microbes or pests through the perception of conserved molecular patterns. This exquisite sensory system represents the first layer of plant innate immunity and is sufficient to defend against the vast majority of microbes. A wealth of genetic information over the past decade has revealed the function of individual plant receptor kinases, and, in fewer cases, the identity of their cognate ligands. However, the exact mechanisms by which plant receptor kinases translate extracellular ligand perception into intracellular signaling remain poorly understood. In this proposal, we will use the leucine-rich repeat receptor kinases FLS2 and EFR - which act as important pattern recognition receptors conferring anti-bacterial innate immunity - as models to decipher early plant receptor kinase signaling. FLS2 and EFR are excellent models to study plant receptor kinase signaling as it is possible to treat plants with synthetic versions of their minimal ligands (i.e. the peptides flg22 and elf18) and measure a plethora of cellular and whole-plant responses. Our previous work on FLS2/EFR has already helped reveal major paradigms of plant signaling, and the current proposal is built upon a wealth of recently published and preliminary data, which makes the proposed work very timely and competitive. In particular, our recent work has revealed that tyrosine phosphorylation of plant receptor kinases is critical for their function, and thus that these kinases have dual-specificity. Yet, very little is known about how this important post-translational modification is being regulated and decoded. The overall objectives of this proposal are to understand how dynamic ligand-regulated protein phosphorylation underlies activation of plant receptor kinase complexes and how this leads to subsequent cellular signaling outputs. The specific aims of this proposal are: (1) To characterize the mechanisms underlying ligand-induced phosphorylation-dependent receptor complex activation (‘Encoding’); (2) To understand how phosphorylation within receptor kinase complexes is dynamically regulated by protein phosphatases (‘Regulation’); and (3) To decipher how ligand-induced activation of receptor kinase complexes is decoded to activate downstream signaling outputs (‘Decoding’). This ambitious proposal will lead to an unprecedented understanding of plant innate immune signaling, which will mechanistically link microbial perception to the establishment of disease resistance. Beyond the field of innate immunity, the results and models obtained through this project will contribute to novel paradigms on how plant receptor kinases work, and thus on how plants continuously sense and respond to their environment.
-