Project

Back to overview

Astronomical dual-frequency comb cavity spectroscopy for exo-planet detection

Applicant Herr Tobias
Number 182598
Funding scheme Project funding
Research institution Centre Suisse d'Electronique et de Microtechnique SA
Institution of higher education Swiss Center for Electronics and Microtech. - CSEM
Main discipline Other disciplines of Physics
Start/End 01.03.2019 - 30.11.2021
Approved amount 281'896.04
Show all

All Disciplines (2)

Discipline
Other disciplines of Physics
Astronomy, Astrophysics and Space Sciences

Keywords (4)

Frequency-comb; Exo-planets; Precision spectroscopy; Spectrometer calibration

Lay Summary (German)

Lead
Die Suche nach Erd-ähnlichen Planeten gehört mit zu den spannendsten Forschungsfeldern der modernen Astronomie. Da solche Planeten nicht direkt beobachtbar sind, bedarf es eines Tricks um sie zu finden: Die sehr genauen spektrale Messung des Lichts eines Sternes über Zeiträume von mehreren Monaten erlaubt es, kleine Farbveränderungen des Sterns zu entdecken, die auf Existenz eines Erd-ähnlichen Planeten hinweisen können. Die Durchführung solcher Messung stellt höchste Anforderungen an die Kalibrierung der astronomischen Instrumente und macht den Einsatz von Laserlichtquellen, die eine Vielzahl an hoch-genauen optischen Wellenlängen emittieren, notwendig. Obwohl solche Laserlichtquellen recht weit entwickelt sind, können sie nicht direkt für die Kalibrierung der astronomischen Instrumente genutzt werden. Das Problem ist, dass diese Instrumente die Vielzahl der dicht gedrängten Laserwellenlängen nicht unterscheiden und daher nicht unmittelbar nutzen können.
Lay summary

Das Ziel dieses Forschungsprojektes ist es, eine neuartige Methode zu erproben, die die bisherigen Einschränkung überwinden kann. Dazu werden wir zwei Kalibrierungsmethoden und ihre intrinsischen Vorteile miteinander vereinen: Zunächst stellt eine Weisslichtquelle, die durch einen Fabry-Pérot-Resonator gefiltert wird, einen vollständigen Satz an Kalibrationswellenlängen für das astronomische Instrument zu Verfügung. Solche Fabry-Pérot-Resonator-basierten Kalibrierungen sind technisch einfach und erprobt, allerdings bei Weitem nicht genau genug. Um die notwendige hohe Genauigkeit zu erreichen, werden wir eine Laserlichtquelle mit einer hohen Anzahl an Laserwellenlängen nutzen und mit ihrer Hilfe den Fabry-Pérot Resonator in Echtzeit präzise zu vermessen. Unser Ansatz, basierend auf zwei Laserlichtquellen, erlaubt es dabei auf die technisch schwierige Reduzierung der Anzahl der Laserwellenlängen zu verzichten. Insgesamt ergibt sich somit ein technisch einfaches System, dass extrem präzise Spektroskopie von Sternspektren ermöglichen und einen wichtigen Beitrag zur Entdeckung Erd-ähnlicher Planeten liefern kann.

Direct link to Lay Summary Last update: 26.03.2019

Responsible applicant and co-applicants

Employees

Name Institute

Project partner

Publications

Publication
Dual-comb cavity-mode width and shift spectroscopy
Charczun D., Nishiyama A., Kowzan G., Cygan A., Voumard T., Wildi T., Herr T., Brasch V., Lisak D., Masłowski P. (2022), Dual-comb cavity-mode width and shift spectroscopy, in Measurement, 188, 110519-110519.
1 GHz dual-comb spectrometer for fast and broadband measurements
Voumard Thibault, Darvill John, Wildi Thibault, Ludwig Markus, Mohr Christian, Hartl Ingmar, Herr Tobias (2021), 1 GHz dual-comb spectrometer for fast and broadband measurements, in Optics Letters.
Dual-comb cavity ring-down spectroscopy
Lisak D., Charczun D., Nishiyama A., Voumard T., Wildi T., Kowzan G., Brasch V., Herr T., Fleisher A. J., Hodges J. T., Ciuryło R., Cygan A., Masłowski P. (2021), Dual-comb cavity ring-down spectroscopy, in Scientific Reports.
Photo-acoustic dual-frequency comb spectroscopy
Wildi Thibault, Voumard Thibault, Brasch Victor, Yilmaz Gürkan, Herr Tobias (2020), Photo-acoustic dual-frequency comb spectroscopy, in Nature Communications, 11(1), 4164-4164.
AI-enabled real-time dual-comb molecular fingerprint imaging
Voumard Thibault, Wildi Thibault, Brasch Victor, Álvarez Raúl Gutiérrez, Ogando Germán Vergara, Herr Tobias (2020), AI-enabled real-time dual-comb molecular fingerprint imaging, in Optics Letters, 45(24), 6583-6583.

Collaboration

Group / person Country
Types of collaboration
Observatorium / Universität Genf Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Research Infrastructure
Prof. Maslowski / Uni Torun Poland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Metrology for Airborne Molecular Contaminants II Symposium, NPL Talk given at a conference Photo-acoustic dual-comb spectroscopy 05.11.2020 Teddington, Great Britain and Northern Ireland Herr Tobias; Voumard Thibault;
IEEE Photonics Conference IPC Talk given at a conference Photo-acoustic and hyperspectral-imaging dual-frequency comb spectroscopy 28.09.2020 Vancouver, Canada Voumard Thibault; Herr Tobias;
OSA Optical Sensors and Sensing Congress Talk given at a conference Dual-Frequency Comb Hyperspectral Imaging by Massively Parallelized Infrared Detection and Machine Learning 11.07.2020 Vancouver, Canada Herr Tobias; Voumard Thibault;
OSA Optical Sensors and Sensing Congress Talk given at a conference Novel concepts in high-coherence multi-heterodyne spectroscopy 11.07.2020 Vancouver, Canada Herr Tobias; Voumard Thibault;
OSA Optical Sensors and Sensing Congress Talk given at a conference Dual-Comb Spectroscopy with Photoacoustic Detection 11.07.2020 Vancouver, Canada Voumard Thibault; Herr Tobias;
Conference on Lasers and Electro-Optics CLEO Talk given at a conference Artificial Intelligence for Real-Time Dual-Frequency Comb Hyperspectral Imaging 10.05.2020 San Jose, CA, United States of America Herr Tobias; Voumard Thibault;
Conference on Lasers and Electro-Optics CLEO Talk given at a conference Dual-Comb Hyperspectral Imaging with a High-Framerate Infrared Detector Array 10.05.2020 San Jose, USA, United States of America Voumard Thibault; Herr Tobias;
Conference on Lasers and Electro-Optics CLEO Talk given at a conference Dual-Comb Photoacoustic Spectroscopy 10.05.2020 San Jose, CA, United States of America Voumard Thibault; Herr Tobias;


Associated projects

Number Title Start Funding scheme
193689 BLUVES - BLue to UV Extreme precision astronomical Spectroscopy 01.11.2020 Sinergia
166108 Broadband optical frequency comb source based on electro-optic modulation for resolved comb line precision spectroscopy 01.06.2016 Project funding
141881 NCCR PlanetS: Origin, evolution and characterisation of planets (phase I) 01.06.2014 National Centres of Competence in Research (NCCRs)
166108 Broadband optical frequency comb source based on electro-optic modulation for resolved comb line precision spectroscopy 01.06.2016 Project funding

Abstract

Ongoing searches for extra-solar Earth-like planets require exquisitely precise and accurate calibration of astronomical spectrometers. It has been realized that only laser frequency combs are capable of providing the required level of accuracy and precision. To date, it remains however exceedingly challenging to generate such frequency combs with resolvable spectral lines and with the required broadband spectral coverage. Here, we propose a paradigm-changing concept based on a dual-frequency comb calibrated Fabry-Pérot cavity, which can overcome major limitations of previous approaches. This novel method has the potential of revolutionizing not only searches for extra-solar planets and for life beyond Earth, but will likely impact the quest for dark energy and new physics on cosmological scales.Astronomers have already detected thousands of extra-solar planets (“exo-planets”) but so far, no planet truly resembling Earth has been found. A challenge in the detection of small, Earth-like planets is the currently limited observational sensitivity. One method deemed capable of finding Earth-like planets is the so called radial-velocity method. This method is based on the detection of tiny wavelength-shifts in the stellar spectrum resulting from the stellar motion induced by an orbiting planet. In order to detect the tiny wavelength-shifts, the precise and accurate wavelength calibration of astronomical spectrometers is critical and must be maintained over year-long time-scales. Laser frequency combs, whose optical spectra consist of large sets of laser lines with absolutely known optical frequencies, are to date the only light source that can provide the required level of long-term accuracy and precision. It remains however exceedingly challenging to generate frequency combs across the entire spectrometer range (e.g. ~1-2 µm) whose laser lines are sufficiently far apart from one another so that they can be resolved by the spectrometer (a necessary condition for calibration). The objective of this proposal is to investigate a novel method that has the potential of overcoming current limitations of frequency combs for astronomical spectrometer calibration. Specifically, we aim at generating a broadband calibration source providing accurate and precise calibration lines to the astronomical spectrometer. In contrast to previous approaches, this will be achieved by separating the requirement of resolvable lines from the frequency comb that provides the absolute calibration: A frequency comb (whose lines cannot be resolved by the spectrometer) will be used to precisely and accurately characterize the transmission spectrum of a large free-spectral range Fabry-Pérot cavity in real time. Simultaneously, this Fabry-Pérot cavity will be illuminated by a continuum source, generating resolvable calibration markers for the spectrometer in transmission. This concept has the potential of providing for the first time a truly broadband calibration source capable of meeting the most stringent requirements of next generation spectrometers that are currently being build and commissioned. If successful the proposed approach can not only revolutionize the search for Earth-like planets and for life beyond Earth, but can also advance searches for dark energy and new for physics on cosmological scale.
-