Project

Back to overview

High performance materials and technologies for soft bioelectronics

Applicant Lacour Stéphanie
Number 182055
Funding scheme Project funding
Research institution Laboratoire des interfaces bioélectroniques flexibles EPFL - STI - IMT - LSBI
Institution of higher education EPF Lausanne - EPFL
Main discipline Material Sciences
Start/End 01.05.2019 - 30.04.2023
Approved amount 800'000.00
Show all

All Disciplines (2)

Discipline
Material Sciences
Microelectronics. Optoelectronics

Keywords (7)

implantable medical devices; microtechnology; wearables; stretchable electronics; soft materials; nanoscience; thin films

Lay Summary (French)

Lead
Les dernières décennies ont été marquées par un changement radical des technologies de l'information. Aujourd'hui, les ordinateurs modernes se présentent sous forme de smartphones, montres intelligentes, lunettes de réalité virtuelle, mais aussi textiles intelligents et implants électroniques médicaux. L'introduction de la conformité mécanique dans le design et réalisation des circuits électroniques traditionnellement préparés avec des matériaux rigides et durs est une entreprise relativement récente. Pour déployer la prochaine génération de circuits électroniques discrets et bio-intégrés, nous devons élargir notre palette de matériaux électroniques ainsi que leurs procédés de fabrication associés
Lay summary

 

L’objectif principal du projet est de faire progresser la recherche et l’ingénierie de matériaux électroniques et isolants déformables pouvant être intégrés à des composants électroniques miniaturisés compatibles avec des dispositifs portables et implantables.
 
Le projet vise à relever trois défis principaux : (1) concevoir et fabriquer des films d’encapsulation hermétiques et flexibles, (2) concevoir une nouvelle classe de matériaux souples et électriquement actifs, et (3) établir des protocoles précis et multimodaux pour caractériser ces nouveaux circuits électroniques souples.
 
Pour ce faire, nous étudierons des structures hybrides à base de films, nanomatériaux et matrices polymériques souples. Les films et dispositifs seront produits en combinant technologie des couches minces avec fabrication additive telle que l’impression 3D. 
Nous développerons de nouveaux bancs expérimentaux multimodaux, combinant plusieurs modalités comme la déformation mécanique, la stimulation thermique, les mesures électriques et électrochimiques et l’environnement biologique.
 
 
Ce projet développera de connaissances et technologies qui contribueront au développement de la prochaine génération de dispositifs portables et médicaux.
Direct link to Lay Summary Last update: 26.02.2019

Responsible applicant and co-applicants

Employees

Associated projects

Number Title Start Funding scheme
157800 Soft bioelectronics for bidirectional neural implants 01.03.2016 SNSF Consolidator Grants

Abstract

Background and rationale. The past decades have witnessed a radical shift in the way we relate to computers and information technology. Today, modern computers come in format of smart watch-es, virtual reality glasses, electronic textiles, and medical electronic implants. The introduction of mechanical compliance within electronic circuits that are traditionally prepared with rigid and stiff materials and microfabrication is a relatively recent undertaking. Wearable and implantable elec-tronics call for circuits with various degrees of freedom so that the next generation of electronic user interfaces imperceptibly conform the complex topology and dynamics of the human body. Soft bioe-lectronics is the emerging route.Objectives. To help in the deployment of wearable and implantable electronics, innovation in design concepts, materials and associated manufacturing is required. The objectives of the MATES project are two-fold: (1) broaden our soft bioelectronic toolbox with new functional materials and related technology, and (2) establish rigorous procedures to assess and validate the multimodal perfor-mance of soft bioelectronic materials and circuits.Specific aims. The MATES project is articulated around 4 aims. The focus of aims 1 and 2 is on high performance soft materials for hermetic encapsulation and electronic functions. Aim 3 proposes the design and development of novel multimodal characterization tools dedicated to soft bioelectronics across scales and environments. Aim 4 will integrate findings from aims 1-2-3 into soft bioelectronic demonstrators of epidermal tactile patches and implantable epicortical neural electrodes. Expected results. Innovation is anticipated in the design of soft electronic materials, and techniques for their characterization. Wearable and implantable soft electronics require thin and miniaturized packaging materials compatible with the mobility of the body. MATES will engineer hybrid organ-ic/inorganic coatings that can protect reliably the electronic components against the harsh physio-logical environment while enabling smooth integration with the soft and dynamic surfaces of the body and organs. MATES will develop soft and 3D printable electronic composite materials to an-swer needs for high conductivity and functional materials. Unique multimodal experimental bench-es combining mechanical loading and electrical/electrochemical monitoring under physiological conditions will be available at the end of the MATES project. Guidelines to reliably assess the per-formance of soft bioelectronics will be established. Impact. The impact of the MATES project is significant both on scientific and societal grounds. MATES will pursue an interdisciplinary effort in materials science, electrical, mechanical and bio- engineering to advance manufacturing strategies for soft bioelectronics. MATES will contribute to establishing standards in evaluating soft bioelectronic materials and devices so that translation to industry be-comes possible. MATES will expand the “Swiss-made” high standards to the manufacturing of the next generation of soft electronic interfaces that will contribute to the rise of personalized health, well-being and medicine. Scientists and engineers to be trained during the MATES project will gain unique interdisciplinary expertise, which will be an unquestionable asset in the upcoming technologi-cal revolution.
-