Back to overview

Investigations in Supramolecular Chemistry

English title Investigations in Supramolecular Chemistry
Applicant Severin Kay
Number 181974
Funding scheme Project funding
Research institution Laboratoire de chimie supramoléculaire EPFL - SB - ISIC - LCS
Institution of higher education EPF Lausanne - EPFL
Main discipline Inorganic Chemistry
Start/End 01.01.2019 - 31.12.2022
Approved amount 845'892.00
Show all

Keywords (5)

nanostructures; self-assembly; fluorescence; cages; sensors

Lay Summary (German)

Synthese von funktionellen Nanostrukturen und von neuen Fluoreszenzfarbstoffen
Lay summary
Ein Ziel unseres Forschungsprojekts ist die Synthese von funktionalen Nanostrukturen mit Hilfe von Selbstorganisations-Prozessen. Dazu verwenden wir Komplexe der Übergangsmetalle, und metallhaltige Liganden. Spezielles Augenmerk gilt dabei Strukturen, die in der Lage sind mehrere Elektronen reversibel zu speichern. Für potentielle Anwendungen ist die Stabilität der Nanostrukturen von entscheidender Bedeutung, und wir versuchen durch Verwendung von neuartigen Strukturelementen die Stabilität gezielt zu erhöhen. Ein weiteres Ziel unserer Arbeiten ist die Entwicklung einer neuen Methode zu Darstellung von Fluoreszenzfarbstoffen. Diese könnten als Chemosensoren zu Anwendung kommen.
Direct link to Lay Summary Last update: 09.10.2018

Responsible applicant and co-applicants


Associated projects

Number Title Start Funding scheme
189644 Versatile high sensitivity and throughput magnetometer for quantum, functional and applied materials 01.03.2020 R'EQUIP
162708 Synthesis of functional nanostructures by self-assembly 01.11.2015 Project funding
204083 The Chemistry of N-Heterocyclic Diazoolefins 01.02.2022 Project funding


The research project will advance our understanding of how to build nanometer-sized metal-ligand assemblies with specific structures and functions. Furthermore, we will provide a new methodology for synthesizing compounds for chemosensing applications.Specifically, the following three projects will be carried out:1) In sub-project A, we will synthesize metalloligands which act as electron accumulative compounds. These metalloligands will then be used to prepare molecularly defined nanostructures using coordination-driven self-assembly. The metal-ligand assemblies will be able to store multiple electrons in a reversible fashion. This characteristic will lead to interesting new functions, such as redox-switchable host-guest chemistry, and/or redox-switchable phase transfer. Overall, this sub-project will represent a major advance in the burgeoning field of redox-active metal-ligand assemblies.2) In sub-project B, we will use half-clathrochelate complexes as versatile links for the construction of metallasupramolecular structures. We will show that these novel links have advantageous characteristics such as structural variability and high thermodynamic stability. The benefit of these characteristics will be demonstrated by synthesizing a series of metal-ligand assemblies. We expect to obtain assemblies with unique chemical and physical properties, and we will capitalize on these properties when pursuing potential applications (e.g. sensing, transport, or catalysis). Overall, this project will establish that half-clathrochelates are versatile and useful links for generating metallasupramolecular structures will interesting properties.3) In sub-project C, we will develop a new method for the synthesis of tetraarylethene AIE luminogens. These kind of luminogens have already found numerous applications in analytical chemistry and materials sciences, and several synthetic methods are available. The key advantage of our new procedure is the possibility to attach the AIE group via C-H activation. As consequence, we can functionalize pre-synthesized (or commercially available) compounds such as macrocyclic hosts or polymers. We will thus be able to access AIE luminogen conjugates, which are difficult to prepare otherwise. We will use these new conjugates for applications in supramolecular analytical chemistry.