Project

Back to overview

A Submillimeter Minimally Invasive System for Cardiac Arrhythmia Ablations

English title A Submillimeter Minimally Invasive System for Cardiac Arrhythmia Ablations
Applicant Nelson Bradley
Number 180861
Funding scheme Bridge - Discovery
Research institution Institut für Robotik und Intelligente Systeme ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Mechanical Engineering
Start/End 01.09.2019 - 30.11.2022
Approved amount 1'553'256.00
Show all

Keywords (3)

Steerable Catheters; Magnetic Navigation; Medical Robots

Lay Summary (German)

Lead
Magnetische Navigation ermöglicht die berührungslose Steuerung von Kathetern im menschlichen Körper. Magnetisch gesteuerte Katheter bieten eine höhere Präzision und Flexibilität als herkömmliche mechanisch gesteuerte Systeme. Die Operation wird dadurch weniger invasiv und sicherer. Trotz dieser vielversprechenden Ergebnisse haben die Grösse und die Kosten der magnetischen Navigationssysteme die Verbreitung dieser Technologie begrenzt. Im Rahmen der im Jahr 2016 begonnenen Zusammenarbeit zwischen der ETHZ und der EPFL haben wir die Kontrolle der Steifigkeit der Katheter mit der magnetischen Navigation kombiniert. Die Möglichkeit, die Steifigkeit und Verformbarkeit von Teilen des Katethers zu kontrollieren, verbessert die Fähigkeit ihn zu manövrieren und zu stabilisieren. Dadurch eröffnet sich die Möglichkeit die Grösse und Kosten des magnetischen Navigationssystems stark zu reduzieren.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Inhalt und Ziel des Forschungsprojekts

Inhalt und Ziel des Forschungsprojekts

Inhalt und Ziel des Forschungsprojekts

Inhalt und Ziel des Forschungsprojekts

Inhalt und Ziel des Forschungsprojekts

Das Ziel dieses Forschungsprojekts ist die Entwicklung eines marktnahen Systems, welches die Kontrolle der Katheter-Steifigkeit mit magnetischer Navigation kombiniert. Dies beinhaltet die Entwicklung von Algorithmen im Bereich der Lokalisierung und Regelung des Katheters. Am Ende des Bridge Discovery-Projekts werden wir über ein finales System verfügen, welches für umfangreiche In-vivo-Versuche bereit ist.

Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Dieses Projekt wird neuartige Technologien zur Revolutionierung der Medizin-Robotik erforschen. Diese Erkenntnisse werden zur Entwicklung des weltweit ersten, minimal invasiven Robotik-Systems führen, welches in der Lage ist, durch kleinste Öffnungen mit komplexen Zugangswegen zu navigieren und dennoch eine hohe Manövrierbarkeit des Katethers zu bieten.

 

Direct link to Lay Summary Last update: 13.08.2019

Responsible applicant and co-applicants

Employees

Publications

Publication
Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators
Piskarev Egor, Shintake Jun, Ramachandran Vivek, Baugh Neil, Dickey Michael D., Floreano Dario (2020), Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators, in Advanced Intelligent Systems, 2(10), 2000069-2000069.

Collaboration

Group / person Country
Types of collaboration
University Hospital Basel Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
University Hospital Zurich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
2020 SJTU Medical Robotics Institute Academic Forum, Shanghai Jiao Tong Unviersity Individual talk Keynote Lecture (via Zoom): "Recent Advances in Remote Magnetic Navigation" 15.12.2020 Shanghai, China Nelson Bradley;
I-RIM 3D 2020 Conference (Italian Institute of Robotics and Intelligent Machines) Talk given at a conference Plenary Lecture (via Zoom): "Microrobotics and Nanomedicine: Future Directions in Medical Robotics" 11.12.2020 Florence, Italy Nelson Bradley;
ICFPMCE 2020 (21th International Conference of Fluid Power and Mechatronic Control Engineering) Talk given at a conference Plenary Lecture (via Zoom): "Microrobotics and Nanomedicine: Future Directions in Medical Robotics" 17.11.2020 Chongqing, China Nelson Bradley;
3rd Shaolin Conference (3rd International Conference on Neurology and Neurosurgery) Talk given at a conference Plenary Lecture (via Zoom): "Recent Advances in Remote Magnetic Navigation" 02.11.2020 Zhengzhou, China Nelson Bradley;
IEEE ICMA 2020 (International Conference on Mechatronic and Automation), Beijing, China Talk given at a conference Plenary Lecture (via Zoom): "Microrobotics and Nanomedicine: Future Directions in Medical Robotics" 14.10.2020 Beijing, China Nelson Bradley;
Weekly Seminar Series, Paul Scherrer Institute Individual talk Microrobotics and Nanomedicine: Future Directions in Medical Robotics 20.09.2020 Villigen, Switzerland Nelson Bradley;
Department of Biomedical Engineering Seminar, Purdue University Individual talk Via Zoom: "Microrobotics and Nanomedicine: Future Directions in Medical Robotics" 16.09.2020 West Lafayette, Indiana, United States of America Nelson Bradley;
AIRS Spotlight Series, Chinese University of Hong Kong Individual talk Via Zoom: "Microrobotics and Nanomedicine: Future Directions in Medical Robotics" 16.09.2020 Shenzhen, China Nelson Bradley;
MedTech x COVID 19: International Webinar on Artificial Intelligence and Robotics Individual talk Keynote Talk via Zoom: "Combating COVID-19: The Role of Robotics in Managing Public Health and Infectious Disease" 28.04.2020 Sha Tin, Hong Kong, China Nelson Bradley;
Presentation to Medtronic, RTG Brain Therapies Neurosurgery Individual talk Remote Magnetic Navigation: Catheter and Microrobot Navigation 11.03.2020 Lousville, Colorado, United States of America Nelson Bradley;
Research Workshop of the Israel Science Foundation on Micro-Swimmers and Soft Robotics Talk given at a conference Keynote Talk "Programmable Magnetic Micromachines" 03.02.2020 Haifa, Israel Nelson Bradley;
4th annual meeting of society for cardiac robotic navigation Talk given at a conference Magnetic catheters and magnetic microrobots 05.09.2019 Nice, France Chautems Christophe;


Communication with the public

Communication Title Media Place Year

Associated projects

Number Title Start Funding scheme
160592 NCCR Robotics: Intelligent Robots for Improving the Quality of Life (phase II) 01.12.2014 National Centres of Competence in Research (NCCRs)
165564 Soft Magnetic Robots: Modeling, Design and Control of Magnetically Guided Continuum Manipulators 01.04.2016 Project funding (Div. I-III)
198643 Understanding Pollen Tube Growth Inspires the Design of Autonomous Soft Robots 01.05.2021 Sinergia
204448 Development of an electromagnetic tracking system for the implantation for deep brain stimulation electrodes 01.01.2022 Project funding (Div. I-III)
155907 Bio-inspired control of microflyers in highly complex environments 01.01.2015 Project funding (Div. I-III)
170225 Robocom++ 01.03.2017 FLAG-ERA

Abstract

Remote magnetic navigation allows for contactless steering of catheters and microrobots. The principle has been proven in operation with more than 100’000 cardiac arrhythmia ablations executed worldwide with the Niobe magnetic manipulation system. Magnetically guided catheters provide greater precision than traditional tendon-driven systems, thus reducing invasiveness and maximizing efficacy, safety, and efficiency. However, the size and cost of the systems have limited the diffusion of this technology. In the scope of collaboration started in 2016 between the ETHZ and the EPFL, we have combined control of stiffness with magnetic navigation. The possibility of tuning the stiffness and deformability of portions of the catheter tip improves both its dexterity and stability. Selectively locking one or more flexible joints of the catheter tip allows for several degrees of freedom despite the application of a single magnetic field, therefore, the instrument can realize complex 2D and 3D shapes. The control of stiffness provides tip stability by selectively making catheter rigid. As the magnetic field is not used to stabilize the tip, this reduced the magnetic navigation system size, weight and cost by at least a factor 10. A successful development of a minimally invasive system requires the integration of localization and control algorithms. The FHNW, with their expertise in 3D Hall sensors, provides the core competence to localize the catheter tip using magnetic field measurements. The project aim is the integration of the three partners’ core technology into the first submillimeter minimally invasive system. A team of outstanding researchers will be recruited. During the recruitment processes, we will inform potential candidates about the long-term goal after the Bridge project and evaluate if they have the required entrepreneurship spirit. In parallel of their research activities during the three year project, they will deepen their knowledge in the development of medical products. This team will collaborate strongly with the team at MSRL that designs the next generation magnetic system and the team that explores new medical applications. The researchers at FHNW and EPFL will provide a link to those two research groups to facilitate knowledge transfer and achieve a solid integration of their core technology. On the intellectual propriety side, two patent applications have been filed to protect the variable stiffness technology and to protect the combination of variable stiffness with magnetic navigation. In 2017, ETHZ has recognized the potential and selected this last patent as one of its top invention of the year. At the end of the Bridge Discovery project, we will have a frozen design ready for extensive in-vivo trials and an engineering team with the required technical expertise to start the development of the medical product. With a frozen design, protected IP, and a strong team, we will be in the best position to close a large-scale financing round and commercialize a minimal invasive robotic system. The lower manufacturing cost resulting from the absence of miniaturize pull-wire systems in the catheter, a smaller magnetic manipulation system, and the integration of localization will facilitate the dissemination of the technology during the commercialization phase. This will be the only system worldwide able to navigate through submillimeter openings with complex access paths and still provide high dexterity at the tip.
-