Project

Back to overview

When trees die: Understanding how plants and microbes interact and influence soil biogeochemical processes

Applicant Solly Emily
Number 180030
Funding scheme Ambizione
Research institution Institut für Agrarwissenschaften ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Other disciplines of Environmental Sciences
Start/End 01.09.2019 - 31.08.2023
Approved amount 957'660.00
Show all

Keywords (9)

Plant-microbe interactions; Plant growth; Drought; Radiocarbon; Stable isotope tracing; Soil biogechemistry; Illumina sequencing; Pinus sylvestris; Tree mortality

Lay Summary (Italian)

Lead
Il cambiamento climatico ha ripercussioni sul funzionamento degli ecosistemi forestali. Di particolare preoccupazione sono i sempre piú frequenti periodi di siccitá che stanno riducendo il tasso di crescita ed incrementando il rischio di mortalità degli alberi in numerose foreste del mondo. Gli episodi di siccità stanno inoltre alterarando le comunitá microbiche del suolo e questo puó influire sui cicli biogeochimici terrestri. Le risposte della vegetazione e delle comunitá microbiche a fattori di stress ambientali come la siccitá sono state finora valutate indipendentemente dai diversi campi di ricerca. Tuttavia, una valutazione meccanicistica sull’effetto interconnesso di queste risposte sui cicli biogeochimici del carbonio e dell’azoto è ancora poco studiata.
Lay summary

Soggetto e obiettivo

La siccità è attualmente un fattore limitante anche nelle foreste delle valli alpine interne dell'Europa, come il Vallese nel sud della Svizzera, dove sono stati osservati alti tassi di mortalità di Pino silvestre negli ultimi decenni.

Lo scopo principale di questo progetto è di studiare simultaneamente le risposte del Pino silvestre e delle comunità microbiche del suolo a fenomeni di siccità e di individuare specifici processi che possono portare ad eventi di mortalità degli alberi. In particolare, con metodi scientifici d’avanguardia verificheremo se: 1) gli alberi e le comunità microbiche rispondono alla carenza idrica ottimizzando la disponibilità d’acqua, 2) una siccità più intensa riduce il flusso di carbonio dalle piante al suolo, 3) la carenza d'acqua riduce la mineralizzazione dell’azoto in composti direttamente disponibili alle piante.

Contesto socio-scientifico

Questo lavoro contribuirà a raccogliere nuove informazioni scientifiche utili alla valutazione dei rischi legati al cambiamento climatico e come riferimento per l’attuazione di pratiche rivolte a prevenire tali rischi nelle foreste di Pino silvestre che circondano diverse città svizzere e sono aree ricreative ben utilizzate.
Direct link to Lay Summary Last update: 10.03.2021

Responsible applicant and co-applicants

Employees

Publications

Publication
Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter
Ofiti Nicholas O.E., Zosso Cyrill U., Soong Jennifer L., Solly Emily F., Torn Margaret S., Wiesenberg Guido L.B., Schmidt Michael W.I. (2021), Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter, in Soil Biology and Biochemistry, 156, 108185-108185.
A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils
Solly Emily F., Weber Valentino, Zimmermann Stephan, Walthert Lorenz, Hagedorn Frank, Schmidt Michael W. I. (2020), A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils, in Frontiers in Forests and Global Change, 3(98), 1-12.

Collaboration

Group / person Country
Types of collaboration
Biogeosciences group / ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Swiss Federal Institute WSL Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Biogeochemical Processes / Max Planck Institute for Biogeochemistry Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
Sustainable Agroecosystem Group / ETH Zürich Switzerland (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Soil Science and Biogeochemistry/ University of Zurich Switzerland (Europe)
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Challenges in Plant Sciences – PSC Colloquium Talk given at a conference Belowground plant growth and global change 13.10.2020 Virtually on Zoom, Switzerland Solly Emily;
EGU General Assembly 2020 Talk given at a conference Potential consequences of water limitation and drought-induced tree mortality on carbon and nitrogen cycling 04.05.2020 Vienna, Austria Solly Emily; Jaeger Astrid;
AGRICULTURAL CHEMISTRY WINTER SCHOOL –ACWS2020 Talk given at a conference Soil organic matter dynamics and feedbacks to climate in forest ecosystems 10.02.2020 Torino, Italy Solly Emily;
AGRICULTURAL CHEMISTRY WINTER SCHOOL –ACWS2020 Poster Interactions between drought-affected Scots pine and changing soil microbial communities 10.02.2020 Torino, Italy Solly Emily; Jaeger Astrid;
Rigi Workshop 2020 Poster Tracing drought-induced changes in soil microbial communities and its interactive effects on Scots pine forest dieback 26.01.2020 Rigi-Kulm, Switzerland Solly Emily; Jaeger Astrid;
4th Thünen Symposium on Soil Metagenomics Poster Drought-induced Scots pine forest dieback: understanding the hidden role of the soil microbiome 11.12.2019 Braunschweig, Germany Jaeger Astrid; Solly Emily;


Self-organised

Title Date Place

Communication with the public

Communication Title Media Place Year
New media (web, blogs, podcasts, news feeds etc.) Tree-Soil-Microbiome Interplay under Drought ETH Website International 2020

Abstract

Forest ecosystems cover approximately 30% of Earth’s land surface and provide innumerable ecosystem services, yet they are vulnerable to climate extremes. Of particular concern are the potential increases in tree mortality associated with drought-induced physiological stress. In parallel to the widespread reductions in tree growth and increased mortality which have been documented in most bioregions as a response to drought, the impact of water limitation on the soil microbiome likely have prominent effects on the cycling of carbon and nitrogen in forest ecosystems. Here we propose to simultaneously assess the currently little explored mechanistic responses of trees and microbial communities exposed to different levels of drought under controlled conditions, and to determine how the interactive effects of these responses influence the dynamics of carbon and nitrogen in forest soils. The proposed project aspires to create a novel, predictive framework founded on the principles that i) trees and microbial communities respond to altered environmental conditions in order to optimize their resource availability, and ii) that the interactive effects of these responses have a key influence on soil biogeochemistry and soil organic carbon storage. To reach these objectives we will adopt a multidisciplinary and multiscale approach combining mesocosm experiments under control conditions and field studies in drought-affected mature forests. Cutting edge methodologies such as high-throughput DNA and RNA sequencing will be implemented to study the long-term responses of the soil microbiome to drought, in parallel to plant physiological changes related to water limitation. State-of-the-art isotopic labeling techniques will be used to trace alterations in the carbon and nitrogen transfer in the plant-soil microbe continuum due to drought under controlled conditions. Radiocarbon (14C) measurements of soil organic matter in mature forest stands will provide fundamental insights on the cascading effects of drought on the stability of the large pool of carbon stored in forest soils. The proposed research will lead to key insights on how belowground processes in forests respond to drought and will thus ultimately contribute to a better understanding of the carbon cycle-climate feedback in a changing climate.
-