Back to overview

Ab Initio Nanofluidics: Electronic Structure and Transport Properties for Osmotic Energy Conversion

English title Ab Initio Nanofluidics: Electronic Structure and Transport Properties for Osmotic Energy Conversion
Applicant Tocci Gabriele
Number 179964
Funding scheme Ambizione
Research institution Institut für Chemie Universität Zürich
Institution of higher education University of Zurich - ZH
Main discipline Physical Chemistry
Start/End 01.02.2019 - 30.06.2022
Approved amount 388'773.00
Show all

All Disciplines (2)

Physical Chemistry
Material Sciences

Keywords (7)

electronic structure; single-layer nanopores; osmotic transport; two dimensional materials; ab initio molecular dynamics; nanofluidics; osmotic energy conversion

Lay Summary (German)

Unser Ziel ist es, die Prinzipien der Osmose auf molekularer Ebene mittels atomistischer Simulationen zu verstehen, indem wir Modellsysteme mit empirischen Berechnungstechniken untersuchen und gleichzeitig realistischere Membranen mit ab initio (quantenmechanischen) Methoden erforschen. Um dieses Ziel zu erreichen, wird eine Prozedur geschaffen, um die hydrodynamische Theorie der Osmose und beschleunigte Probenahmetechniken zu koppeln, um Transporteigenschaften an nanofluidischen Grenzflächen mittels Ab-Initio-Simulationen zu berechnen. Wir werden diese Prozedur auf die Untersuchung des Ionen- und Wassertransports durch atomar dünne Membrane in verschiedenen Systemen anwenden. Im ersten Jahr des Projekts werden wir den Wassertransport an einer Vielzahl von Grenzflächen untersuchen, während wir uns im zweiten und dritten Jahr auf den ionischen Transport im linearen und nichtlinearen Bereich konzentrieren werden.
Lay summary
Durch die Mischung von Salz- und Süßwasser an den Flussmündungen kann eine große Menge an Energie, die so genannte blaue Energie, genutzt werden. Dennoch bleibt die blaue Energie eine unerforschte Quelle, da die Effizienz herkömmlicher Membrane begrenzt ist. Jüngste Experimente haben über eine extrem hohe Leistung berichtet, die durch den ionischen Transport entlang zweidimensionale Materialien und Nanoröhrenmembranen erzeugt wird. Obwohl die elektronische Struktur und die quantenmechanische Natur von Materialien als sehr relevant für die nanoskalige osmotische Energieumwandlung angesehen wird, ist ihre Rolle für den ionischen Transport nicht bekannt. Wir werden die Rolle der elektronischen Struktur von Materialien für den ionischen Transport untersuchen, indem wir beschleunigte ab initio Molekularen Dynamik-Simulationen durchführen und die Transporteigenschaften mit Hilfe der hydrodynamischen Theorie berechnen. Bis zum Ende des Projectes werden wir die Grundprinzipien für die Entwicklung von Nanomembranen zur osmotischen Stromerzeugung festgelegt haben. Weitere Bereiche, die von der vorgeschlagenen Forschung profitieren werden, sind Wasserentsalzung, Transport in Biomembranen und DNA-Sequenzierung durch Nanoporen.
Direct link to Lay Summary Last update: 05.12.2018

Responsible applicant and co-applicants



Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction
Tocci Gabriele, Bilichenko Maria, Joly Laurent, Iannuzzi Marcella (2020), Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction, in Nanoscale, 12(20), 10994-11000.
Catalyst Proximity-Induced Functionalization of h-BN with Quat Derivatives
Hemmi Adrian, Cun Huanyao, Tocci Gabriele, Epprecht Adrian, Stel Bart, Lingenfelder Magalí, de Lima Luis Henrique, Muntwiler Matthias, Osterwalder Jürg, Iannuzzi Marcella, Greber Thomas (2019), Catalyst Proximity-Induced Functionalization of h-BN with Quat Derivatives, in Nano Letters, 19(9), 5998-6004.


Group / person Country
Types of collaboration
Prof. Dr. Ing. Robert Meissner, Hamburg University of Technology (TUHH) Germany (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication
- Research Infrastructure
- Exchange of personnel
Prof. Laurent Joly, Institut Lumière Matière, Université Lyon 1 and CNRS, Lyon, France France (Europe)
- in-depth/constructive exchanges on approaches, methods or results
- Publication

Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
Invited lecture at TUHH for the bachelor course in Modern Materials Development Individual talk Nanofluidics for osmotic energy conversion and water desalination 14.07.2020 Hamburg University of Technology (TUHH), Germany Tocci Gabriele;
Towards Reality in Nanoscale Materials X Talk given at a conference On slip and diffusion of water confined between two-dimensional materials from ab initio molecular dynamics 12.02.2020 Levi, Finland Tocci Gabriele;
Swiss Chemical Society Poster On water slip and diffusion under confinement from ab initio molecular dynamics 06.09.2019 Lausanne, Switzerland Tocci Gabriele;
Ice group workshop, "International Materials Simulation Workshop" Talk given at a conference Nonlinear light scattering from atomistic simulations 19.07.2019 York, Great Britain and Northern Ireland Tocci Gabriele;
Theory Talks at Cambridge University, Dept. of Chemistry Individual talk Water slippage confined between two-dimensional materials from ab initio molecular dynamics. 18.07.2019 Cambridge, UK, Great Britain and Northern Ireland Tocci Gabriele;


A vast amount of energy may be harnessed from the mixing between salty and fresh water at river estuaries. This, so-called blue energy, is induced by the osmotic pressure built between reservoirs at different solute concentrations. It is estimated that the overall power that can be generated by exploiting salinity concentration gradients is of the same order as that currently produced from hydroelectric power plants, globally. So far, however, osmotic energy remains a largely unexplored source, due to challenges in fabricating membranes that can effectively harvest the potential of seas and oceans.Recent progress in nano-fabrication and nano-characterization techniques, as well as the rise of graphene and other two-dimensional materials, have opened new venues for the development of osmotic membranes. For instance, recent experimental works have shown that boron nitride nanotubes and nanometer MoS2 single-layer nanopores can harvest osmotic energy with unprecedented efficiency. However, a number of fundamental questions have to be addressed in order to scale-up the production of nanomembranes for osmotic power generation. In particular, the atomistic mechanisms of ionic and water transport in real nanomembranes under different transport regimes are unclear. Pioneering experimental results suggest that the chemical nature and the electronic structure of different materials is key to understand osmotic and nanofluidic transport in real systems, but it is extremely challenging for experiments to provide atomic resolution into the structure and transport at the nanomembrane/fluid interface. Computer simulations instead, play an increasingly important role and it is now possible to use them to bring about major breakthroughs in understanding the fluid structure and dynamics at the interface with nanomembranes under operating aqueous conditions. However, so far there has been little to no attempt to investigate the role of the electronic structure on osmotic flow in nanofluidics. At the nanoscale specific electronic effects play a crucial role, and understanding the relation between the electronic structure and osmotic transport is therefore key to design efficient membranes for osmotic energy conversion. Given the importance to find and effectively harvest different types of renewable energy sources, this represents a fundamental question in the chemical and physical sciences, which has not been answered, yet.We aim to answer this question with atomistic simulations, by coupling systematic studies on model systems treated using empirical potentials with in depth explorations of more realistic membranes, treated using ab initio (i.e. quantum mechanical) methods, to account explicitly for the electronic structure of liquid/solid interfaces. To achieve this goal, the hydrodynamic theory of osmosis will be coupled to enhanced sampling techniques, in order to compute transport properties at nanofluidic interfaces using ab initio simulations. We will apply this framework to the study of ion and water transport across atomically thin membranes, both in the linear regime and in the nonlinear regime, with a particular focus on the recently observed ionic Coulomb blockade. This work will also take advantage of the exchange with experimental groups involved in the fabrication of nanomembranes to explore novel materials for osmotic energy applications. By accounting explicitly for the electronic structure of different materials, not only will we establish the key physical principles for the development of stable and efficient nanomembranes for osmotic power generation, but we may also improve our understanding of water purification and desalination, of ionic transport in biological pores, and of sequencing of DNA through nanopores.