Project

Back to overview

Engineering of cell-free Extracellular Matrices enriched with osteoinductive and immunomodulatory factors to enhance bone healing

English title Engineering of cell-free Extracellular Matrices enriched with osteoinductive and immunomodulatory factors to enhance bone healing
Applicant Martin Ivan
Number 179259
Funding scheme Project funding (Div. I-III)
Research institution Departement Biomedizin Universität Basel
Institution of higher education University of Basel - BS
Main discipline Molecular Biology
Start/End 01.08.2018 - 31.07.2022
Approved amount 572'000.00
Show all

All Disciplines (2)

Discipline
Molecular Biology
Cellular Biology, Cytology

Keywords (5)

bone formation; osteoinduction; regenerative medicine; regenerative immunology; tissue engineering

Lay Summary (Italian)

Lead
Ingegnerizzazione di matrici extracellulari arricchite con fattori osteoinduttivi e immunomodulatori come strategia per migliorare la rigenerazione ossea.
Lay summary

Infezioni, traumi e tumori sono tra le principali cause di difetti ossei di dimensioni critiche nei quali la capacità rigenerativa è compromessa. Queste fratture non sono ad oggi risolvibili in modo efficiente tramite procedure terapeutiche standard e la ricerca di soluzioni alternative è di fondamentale importanza. L’utilizzo di matrici extracellulari (ECM) come materiale impiantabile nel sito della frattura è stato proposto di recente come terapia alternativa. Queste matrici possono essere ingegnerizzate per inglobare fattori pro-rigenerativi da presentare nel sito dell’impianto, fondamentali per il reclutamento di cellule endogene. L’obiettivo di questo progetto è lo sviluppo di ECM ingegnerizzate per favorire la rigenerazione ossea in fratture di dimensioni critiche. Le ECM saranno generate in vitro grazie all’utilizzo di una linea di cellule stromali mesenchimali generata in precedenza nel nostro laboratorio, e in seguito devitalizzate in maniera da non contenere materiale immunogenico al momento dell’impianto. L’utilizzo di questa linea cellulare permetterà, oltre a una maggiore standardizzazione, di modulare le ECM, arricchendole di particolari fattori d’interesse grazie a modificazioni genetiche delle cellule. La nostra ipotesi è che l’inclusione nelle ECM non solo di fattori osteoinduttivi, ma anche immunomodulatori (riconosciuti recentemente come cruciali nei processi di formazione ossea) possa portare a un miglior risultato terapeutico.

Questo progetto contribuirà a migliorare la conoscenza sul ruolo che infiammazione e risposta immunitaria hanno nel modulare la rigenerazione del tessuto osseo. Questo concorrerà più in generale allo sviluppo di biomateriali/farmaci innovativi da applicare nel campo dell’immunologia rigenerativa.

Direct link to Lay Summary Last update: 20.04.2018

Responsible applicant and co-applicants

Employees

Project partner

Abstract

Background Infection, trauma or tumors can generate critical bone defects with compromised regeneration capacity, still not resolvable through clinical gold standard solutions. Extracellular matrices (ECMs) have been proposed for the physiological presentation of various cytokines at sites of tissue repair to activate and regulate endogenous cells. ECMs do not need to be derived from native tissues, but can be tissue-engineered and then devitalized. This provides the potential advantages of standardization (e.g., thanks to the use of cell lines) and of customization (e.g., by transducing cells to overexpress defined factors). ECMs could be engineered to deliver not only osteoinductive factors, but also immunomodulatory signals, which are increasingly being recognized as strong regulators in bone regeneration. Working hypothesis. We hypothesize that engineered and devitalized ECMs, specifically enriched in osteoinductive factors (BMP-2), as well as in cytokines polarizing immune response towards a pro-regenerative phenotype (IL4) and resolving acute inflammation (IL1Ra), can enhance bone regeneration. Specific aims. In order to generate the modular bricks for the engineering of ECMs, cell lines expressing different instructive cues (BMP-2, IL4 and IL1Ra) will be derived from an existing death-inducible human mesenchymal cell line (MSOD) (Aim1). ECMs enriched with different combinations and doses of such cues will be engineered, characterized and tested in a standard ectopic implantation model (Aim2). The capacity of these ECMs in modulating human immune cell recruitment and polarization will be investigated in vitro (Aim3). The effect of signals presented by ECMs on bone repair and the possible role of macrophages and T cells will be investigated in a rat critical sized calvarial defect (Aim4).Experimental design. Three cell lines will be generated by lentivirally transducing the MSOD line to express BMP2, IL4 and IL1Ra under the control of inducible promoters, and characterized in vitro for secretion of factors, proliferation, differentiation capacity and death-induction responsiveness (Aim1). Generated cell lines will be cultured on collagen scaffolds within a perfusion bioreactor to engineer ECMs, enriched in the different instructive signals. Obtained ECMs will be assessed for protein content and release, compatibility with inducible apoptosis and osteoinductive potential (Aim2). The immunomodulatory effect of engineered ECMs will be evaluated in an in vitro human setup based on i) chemokine release profiles, ii) recruitment and polarization of macrophages and iii) macrophage-mediated polarization of T cells (Aim3). The capacity of engineered ECMs to enhance bone repair will be studied in critical sized calvarial bone defects in immunocompetent rats, with or without depletion of T cells (Aim4). Expected value of the proposed project. Our studies will lead to the establishment of a strategy to engineer cell-free customizable materials presenting specific signals crucial for tissue regeneration. Moreover, our research will allow gaining new insights on the possibility to enhance bone healing by modulating inflammation and immunity. Such knowledge will be instrumental to improve the design of biomaterials/drugs in the broader field of regenerative immunology.
-