Back to overview

Displacement Talbot Lithography for micro and nanopatterning

Applicant Jefimovs Konstantins
Number 177036
Funding scheme R'EQUIP
Research institution Synchrotron Radiation and Nanotechnology Paul Scherrer Institut
Institution of higher education Paul Scherrer Institute - PSI
Main discipline Other disciplines of Engineering Sciences
Start/End 01.01.2018 - 31.12.2020
Approved amount 345'082.00
Show all

All Disciplines (4)

Other disciplines of Engineering Sciences
Clinical Cardiovascular Research
Respiratory Diseases

Keywords (8)

3d lithography; mesoscopic systems; Displacement Talbot Lithography; printed electronics; phase contrast x-ray imaging; photonics; grating interferometry; plasmonics

Lay Summary (German)

Displacement Talbot Lithography (DTL) ist eine neuartige von der Eulitha AG patentierte Methode zur Nanostrukturierung. Das Verfahren ermöglicht die Strukturierung von periodischen Strukturen im Wafer-Maßstab mit Perioden von bis zu 250 nm. Dies ermöglicht breite Reichweite von Anwendungen, die in diesem Projekt untersucht werden. Die DTL-Technologie ist in sogenannten Phable Systemen integriert. PSI wird der erste Besitzer eines Phable Systemen in der Schweiz und ein weltweit erster Zugangspunkt eines 8" kompatiblen Systemen Version.
Lay summary

Inhalt und Ziel des Forschungsprojekts

Mit DTL wollen wir periodische Strukturen mit kleinen Abständen, auf großen Flächen, mit hohem Seitenverhältnis und auf flexiblen Trägern erzeugen. In Kombination werden diese Aspekte optische Komponenten für eine neue Generation der medizinischen Röntgenbildgebung ermöglichen, die ein Hauptaugenmerk des Projekts sein wird. Darüber hinaus werden wir mit dem DTL antireflektierende Strukturen für hocheffiziente Röntgen-Szintillatoren, großflächige Plasmonik und hydrophobische Strukturen für gedruckte Elektronikanwendungen herstellen.


Wissenschaftlicher und gesellschaftlicher Kontext des Forschungsprojekts

Das Projekt ermöglicht die Förderung der Röntgenbildgebung der nächsten Generation in Kliniken das wird es Krebsdiagnostik mit verbesserter Empfindlichkeit in frühen Stadien und niedrigerer Dosis ermöglichen. Die DTL hat ein hohes Potenzial, Anwendungen in verschiedenen Bereichen zu fördern, in denen eine schnelle und zuverlässige großflächige Nanostrukturierung erforderlich ist. Dies umfasst, ohne darauf beschränkt zu sein, Photonik, Solarzellen, Spektroskopie, Biotechnologie, mesoskopische Systeme, gedruckte Elektronik, analytische und Telekommunikationsanwendungen.



3D-Lithographie, mesoskopische Systemen, Displacement Talbot Lithography, gedruckte Elektronik, Phasenkontrast Röntgenbildgebung, Photonik, Gitterinterferometrie, Plasmonik

Direct link to Lay Summary Last update: 20.12.2017

Responsible applicant and co-applicants


Towards clinical grating-interferometry mammography
Arboleda Carolina, Wang Zhentian, Jefimovs Konstantins, KoehlerThomas, van StevendaalUdo, KuhnNorbert, DavidBernd, PrevrhalSven, LångKristina, ForteSerafino, Kubik-HuchRahel Antonia, LeoCornelia, MarconMagda, BossAndreas, RoesslEwald, StampanoniMarco (2020), Towards clinical grating-interferometry mammography, in European Radiology , 30, 1419.
Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching
Shi Zhitian, JefimovsKonstantins, RomanoLucia, StampanoniMarco (2020), Towards the Fabrication of High-Aspect-Ratio Silicon Gratings by Deep Reactive Ion Etching, in Micromachines, 11, 864.
Microbubbles as a contrast agent in grating interferometry mammography: an ex vivo proof-of-mechanism study
Lång Kristina, ArboledaCarolina, ForteSerafino, WangZhentian, PrevrhalSven, KoehlerThomas, KuhnNorbert, DavidBernd, JefimovsKonstantins, Kubik-HuchRahel, StampanoniMarco (2019), Microbubbles as a contrast agent in grating interferometry mammography: an ex vivo proof-of-mechanism study, in European Radiology Experimental, 3, 19.
Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry
Kagias Matias, Wang Zhentian, Guzenko Vitaliy A., David Christian, Stampanoni Marco, Jefimovs Konstantins (2018), Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry, in Materials Science in Semiconductor Processing, 1-7.
Optimization of displacement Talbot lithography for fabrication of uniform high aspect ratio gratings
Shi Zhitian, JefimovsKonstantins, RomanoLucia, StampanoniMarco, Optimization of displacement Talbot lithography for fabrication of uniform high aspect ratio gratings, in Japanese Journal of Applied Physics , 1.

Communication with the public

Communication Title Media Place Year

Associated projects

Number Title Start Funding scheme
189662 Advanced Si DRIE tool for highlY uniform ultra-deep structuring (SiDRY) 01.07.2020 R'EQUIP
160586 Solar Water Splitting: Photovoltage, Surface Dipole, and Catalysis Strategies 01.09.2015 Assistant Professor (AP) Energy Grants
154472 Med-XPhase - Phase contrast X-ray imaging as a new diagnostic tool 01.01.2015 Sinergia
157705 Earth Abundant Semiconductors for next generation Energy Harvesting, EASEH 01.02.2016 SNSF Consolidator Grants
172774 New Directions in Artificial Spin Systems 01.11.2017 Project funding
165559 Optical Strong Coupling in Colloidal Quantum Dots 01.05.2016 Project funding
153798 3.3kV SiC MOSFET and diodes for advanced power electronic systems 01.01.2015 NRP 70 Energy Turnaround
159263 X-ray phase-contrast micro computed tomography for improved pathology 01.10.2015 Interdisciplinary projects
172913 Complex colloids assembled using capillary interactions: a new route towards active materials 01.09.2017 SNSF Professorships


Displacement Talbot Lithography (DTL) is a recently patented technology by Eulitha AG, a spin-off of PSI. Eulitha is the first and currently only provider of DTL systems worldwide. DTL is a powerful method to pattern periodic structures with periodicity down to 300 nm on a wafer scale (up to 8” diameter) using coherent UV illumination, which by far exceeds standard UV-lithography. Further, DTL has advantage over standard photolithography in providing very high depth of focus and being insensitive to any residual stitching errors in the mask. These properties (high resolution, high depth of focus and absence of stitching errors) enable unprecedented quality reproducibility of the photolithography process compared to a standard photolithography (the latter limited to a resolution of 1-2 micrometers pitch). On the other hand, it enables photoresist patterning of structures with much smaller dimensions and much higher aspect ratios, which in turn enables new opportunities for pattern transfer processes for various applications.Our team will mainly use DTL to develop groundbreaking optical components for gratings-based phase contrast X-ray interferometry, a disruptive imaging technology which has the potential to revolutione medical X-ray imaging. With DTL we aim at producing gratings with smaller pitches, on larger areas, with higher aspect-ratio and on flexible supports. All combined, these aspects will enable the design and construction of novel diagnostic devices based on X-ray phase contrast imaging, initially for breast and lung imaging and, in a longer perspective, for whole body phase contrast CT. Our preliminary tests, in collaboration with Eulitha AG, demonstrate that the DTL technology can address these challenges and enable serial patterning of structures with dimensions from few micrometers down to few hundred nanometers on a 4” scale. Our further goal is to increase the stitching free nanopatterned area and demonstrate a 8” wafer compatible process. Obviously, in order to achieve a successful pattern transfer from the photoresist into the required material a dedicated iterative multistep process is required, which calls for in-house patterning capability.The scientific case of this proposal is strongly supported by contributions from other research groups at PSI and the main Swiss research institutions. Those include plans to use DTL to develop antireflective structures to improve the efficiency of X-ray scintillators and large area plasmonics and hydrophobic structures for printed electronics applications. Further, we aim at extending the DTL technique to a wider range of geometries. In particular, we intend to combine DTL with a 3D scanner to enable extension of the geometries of nanostructures to custom 2D shapes as well as to explore the potential of the technology for realization of high aspect ratio 3D nanostructures.