Project

Back to overview

Geosystem Reactive Transport (GREAT) Visualisation Lab

Applicant Saar Martin O.
Number 177031
Funding scheme R'EQUIP
Research institution Institut für Geophysik ETH Zürich
Institution of higher education ETH Zurich - ETHZ
Main discipline Geophysics
Start/End 01.01.2018 - 31.12.2020
Approved amount 582'244.00
Show all

All Disciplines (2)

Discipline
Geophysics
Geochemistry

Keywords (19)

Multiphase Reactive Transport; Groundwater; Particle Tracking Velocimetry (PTV); Particle Image Velocimetry (PIV); Subsurface flow; Geothermal Energy; Fluid-mineral Reactions; X-Ray Computed Tomography; Flow-through experiments; Fractured Media; Nuclear Waste Storage; CO2 Sequestration; Permeability/Porosity Changes; Hydrocarbons; Infrastructure Development; Dissolution/Precipitation; Laser-Induced Fluorescence (LIF); Geochemical Reactions; Porous Media

Lay Summary (German)

Lead
Während reaktiver Transportprozesse ist Flüssigkeitstransport durch komplexe Rückkopplungen mit chemischen und physikalischen Re- und Interaktionen gekoppelt. Untersuchungen der Untergrundprozesse sind begrenzt, da Bohrkosten hoch und Untergrundparameter schwer messbar sind. Das GREAT Visualisierungslabor ermöglicht reaktive Transportprozesse in Laborexperimenten im kleinen Massstab durchzuführen und sie in Echtzeit oder in Folgeschritten zu visualisieren. Dies dient der Validierung von Computersimulatoren und -modellen, was wiederum der Hochskalierung reaktiver Transportprozesse auf Untergrundreservoire, Aquifere, geothermale Systeme u.v.m. dient.
Lay summary
 

Im GREAT Visualisierungslabor finden erst reaktive Transportexperimente in der Durchfluss-Reaktions-Zelle (DRZ) statt, wobei es ggf. zu Mineral/Material-Auflösungen/Ausfällungen kommt. Die DRZ ist in einem Röntgentomographen, der während des Experiments 3D-Bilder des Festkörpers erzeugt, die im 3D-Drucker gedruckt werden. Durch das 3D-gedruckte Material wird eine Flüssigkeit geschickt, die durch Laser-Ausleuchtung und -induzierter Illumination die 3D-Strömung und -Konzentration gelöster Substanzen zeigt. Ziel ist reaktive Transportprozesse bzgl. der Veränderungen des Festkörpers sowie des Transportes von Substanzen im Festkörper zum Test und zur Validierung von Computersimulatoren darzustellen. 

Reaktive Transportprozesse spielen eine Schlüsselrolle in der nachhaltigen Nutzung vieler Ressourcen (Wasser, Rohstoffe, Energie, Nahrung) und im Umweltschutz (Abwasser, Gesundheit, Nachhaltigkeit).  Weiter können auch andere Reaktive Transportsysteme, z.B. in Ingenieur-, Erd- und Umweltwissenschaften untersucht werden.    

Direct link to Lay Summary Last update: 30.11.2017

Responsible applicant and co-applicants

Publications

Publication
Shear induced fluid flow path evolution in rough-wall fractures: A particle image velocimetry examination
Naets Isamu, Ahkami Mehrdad, Huang Po-Wei, Saar Martin O., Kong Xiang-Zhao (2022), Shear induced fluid flow path evolution in rough-wall fractures: A particle image velocimetry examination, in Journal of Hydrology, 127793-127793.
Flow-through Drying during CO 2 Injection into Brine-filled Natural Fractures: A Tale of Effective Normal Stress
Lima Marina Grimm, Javanmard Hoda, Vogler Daniel, Saar Martin O., Kong Xiang-Zhao (2021), Flow-through Drying during CO 2 Injection into Brine-filled Natural Fractures: A Tale of Effective Normal Stress, in International Journal of Greenhouse Gas Control, 109, 103378-103378.
High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media
Ahkami Mehrdad, Roesgen Thomas, Saar Martin O., Kong Xiang-Zhao (2019), High-Resolution Temporo-Ensemble PIV to Resolve Pore-Scale Flow in 3D-Printed Fractured Porous Media, in Transport in Porous Media, 129(2), 467-483.

Datasets

Particle Shadow Velocimetry (PSV) images for flow visualization in fractured porous media

Author Ahkami, Mehrdad; Kong, Xiangzhao; Saar, Martin
Publication date 08.08.2018
Persistent Identifier (PID) https://doi.org/10.3929/ethz-b-000281502
Repository ETH Research Collection


Flow-through Drying during CO2 Injection into Brine-filled Natural Fractures: A Tale of Effective Normal Stress

Author Lima, Marina Grimm
Publication date 18.07.2020
Persistent Identifier (PID) 10.3929/ethz-b-000426904
Repository ETH Research Collection


Shear induced fluid flow path evolution in rough-wall fractures: The first velocity field quantification with PIV

Author Nates, Isamu
Publication date 02.05.2022
Persistent Identifier (PID) 10.3929/ethz-b-000452421
Repository ETH Research Collection


Scientific events

Active participation

Title Type of contribution Title of article or contribution Date Place Persons involved
18th Swiss Geoscience Meeting Talk given at a conference Quantification of fracture-matrix fluid exchange in fractured porous media PIV measurements 06.11.2020 Zurich, Switzerland Saar Martin O.; Kong Xiangzhao;
18th Swiss Geoscience Meeting Talk given at a conference PIV examinations on the flow-path evolution induced by shear displacements in rough-wall fractures 06.11.2020 Zurich, Switzerland Kong Xiangzhao; Saar Martin O.;
18th Swiss Geoscience Meeting Talk given at a conference Carbonate dissolution in tight sandstones and flow-through drying in fractured granites: The role of stress 06.11.2020 Zurich, Switzerland Saar Martin O.; Kong Xiangzhao;
InterPore2020 Talk given at a conference Laser-Induced Fluorescence (LIF) study of solute transport in 3D-printed fractured porous media 31.08.2020 Online, Switzerland Saar Martin O.; Kong Xiangzhao;
Goldschmidt 2019 Talk given at a conference Coupled geochemical-mechanical evolution during injection of CO2-charged brine into sandstones 18.08.2019 Barcelona , Spain Saar Martin O.; Kong Xiangzhao;
ARMA-CUPB geothermal international conference Talk given at a conference Experimentally exploring permeability evolution induced by THMC-coupled processes 05.08.2019 Beijing, China Kong Xiangzhao; Saar Martin O.;
InterPore2019 Talk given at a conference Fracture-matrix flow interaction characterizations using a temporo-ensemble PIV method 06.05.2019 Valencia, Spain Kong Xiangzhao; Saar Martin O.;
EGU General Assembly Conference Talk given at a conference Flow characterization in fractured porous media using the temporo-ensemble PIV method 07.04.2019 Vienna , Austria Saar Martin O.; Kong Xiangzhao;
AGU Fall Meeting Talk given at a conference High-resolution temporo-ensemble PIV to resolve pore-scale flow in 3d-printed fractured porous media 10.12.2018 Washington, DC, United States of America Kong Xiangzhao; Saar Martin O.;


Associated projects

Number Title Start Funding scheme
172760 Solute and Particles swarms in bifurcating fractures: A new paradigm in imaging and characterizing flow structures and solute transport in three dimensions 01.09.2018 Project funding

Abstract

Subsurface reactive fluid flow processes are key actors in resource (water, mineral, energy, and food) development and environmental protection (e.g., waste treatment, public health, and sustainability). During these applications, fluid flow is coupled, through complex feedback loops, to chemical reaction and/or physical fluid-solid, fluid-solute, and/or fluid-fluid interactions. To understand these coupled processes, we often seek to collect 3D data at particularly high spatial/temporal resolutions that are often well-hidden inside the porous/fractured medium, such as: multiphase fluid velocity vector fields, solute concentration and, ideally, temperature fields, chemically reactive and/or biological changes in pore-space geometry due to mineral dissolution/precipitation and/or changes in multiphase fluid saturation within the pore space. However, till now, it has been very difficult to visualize 3D time-series (i.e., 4D) data during lab experiments that investigate reactive transport through a porous and/or fractured medium at sufficient spatial and temporal resolutions. Simultaneously achieving all of the above goals is virtually impossible. However, we can get close to this goal with the here-proposed Geosystem REActive Transport (GREAT) Visualization Lab. With a broadening research spectrum in our research group and other research groups, the GREAT Visualization Lab will bring reactive transport research to the next level regarding: (1): Conducting reactive flow-through experiments directly inside (i.e., in-situ) a custom-XRCT scanner to obtain 4D images over the course of the reactive flow-through experiment at as high of a resolution as possible, given the necessarily larger sample sizes needed to cover the representative elementary volumes (REVs) typically needed. The acquired 4D data facilitate any necessary analyses on changes of solid matrix and/or fluid phases.(2): Conducting experiments using Particle Image/Tracking Velocimetry (PIV/PTV) and Laser-induced Fluorescence (LIF) experiments. This enables visualization of the 3D multiphase fluid flow vector and solute/dye/reactant concentration/temperature fields, using analogue 3D-print transparent materials. This allows us to perform measurements of certain interactions between fluid-solid, fluid-fluid, and fluid-solute. (3): Combing the data from (1) and (2), resulting in 4D data that contain both the information from the reactive flow-through experiments (1), conducted with actual materials of interest, and the multiphase fluid flow vector and solute/dye/reactant concentration fields (2). This rich, high-frequency, high-resolution 4D data set is then used to a) test numerical reactive transport simulators/simulations at the pore scale that combine all of the measured data (reactions, chemistry, multiphase fluid flow fields, concentration/temperature fields, etc.) and to b) use the tested numerical simulators to numerically up-scale the results to (reservoir) scales of interest. This unique GREAT Visualization Lab will be equipped with a custom-XRCT system that is powered by a scanning gantry with an X-ray tube and a large detector, enabling 3D scanning of objects from sub-micrometer resolution for small-sized samples to submillimeter resolution for medium-sized samples. The GREAT Visualization Lab will also be equipped with a custom-made PIV/PTV-LIF system that is powered by a laser, high resolution cameras, and control and data acquisition system, enabling 3D PIV/PTV and LIF experiments. The GREAT Visualization Lab enables fundamental and applied reactive transport research that addresses some of society’s most pressing questions regarding (geothermal) energy and mineral resources, CO2 sequestration to reduce global climate warming, nuclear waste storage, as well as hydrocarbon and groundwater flow, related to Switzerland and the world.
-