Project

Back to overview

Laser Micro-Machining System for Meso-Manufacturing

English title Laser Micro-Machining System for Meso-Manufacturing
Applicant Paik Jamie
Number 177027
Funding scheme R'EQUIP
Research institution Laboratoire de robotique reconfigurable EPFL - STI - IGM - RRL
Institution of higher education EPF Lausanne - EPFL
Main discipline Mechanical Engineering
Start/End 01.03.2018 - 31.08.2022
Approved amount 139'500.00
Show all

Keywords (8)

distributed sensing; smart composite material fabrication; multi-DoF robot; shape memory polymer; additive manufacturing; distributed actuation; soft electronics; variable stiffness

Lay Summary (French)

Lead
Prof. Jamie PAIK
Lay summary
Une multitude de dispositifs et gadgets électroniques sont mobilisés au cours de nos activités quotidiennes. Ceci est rendu possible grâce aux avancées en micro- et macrofabrication. Afin de bénéficier d'une conception et finition de produits à grande échelle, la technologie microélectronique, au même titre que les caractéristiques des technologies de fabrication conventionnelles, sont optimisées en direction d'une meilleure fonctionnalité. Pourtant, aujourd'hui, le développement des méthodes et des caractéristiques de fabrication à l’échelle intermédiaire est négligé et sous-développé. Ainsi, nous nous proposons de mettre en place de nouvelles méthodes de fabrication intégrées pour répondre à ce défi, lesquelles permettront en outre un assemblage facilité. Actuellement, une telle technologie est manquante dans différentes industries de fabrication. Or, cette vision des processus automatisés de composants par assemblage sera sans aucun doute le prochain tournant de la nouvelle génération des technologies de fabrication.
Direct link to Lay Summary Last update: 24.05.2022

Responsible applicant and co-applicants

Associated projects

Number Title Start Funding scheme
163292 RoBuSt: Robotic Lower Back Support 01.01.2016 Project funding
165694 START: Surface for TAngible RealiTy 01.11.2016 Project funding

Abstract

Electronic devices and gadgets surround our daily activities and this is possible thanks to advances in both macro- and micro- manufacturing technology. To benefit this large-scale design and finish of the products, the microelectronics technology along with conventional manufacturing technologies are well optimized toward the functionality. However, at present, methods for manufacturing features at intermediate scales are overlooked and under-developed. Due to the structural mechanics and practicality, techniques used in macro-scale machining and assembly are inappropriate for complex devices with millimeter-scale features. On the other hand, NEMS- or MEMS-based manufacturing are too limiting in terms of geometry and material choices to create diverse devices. This millimeter-size range, with features between tens of micrometers to tens of centimeters, is called the meso-scale.Our objective is to develop new multi-material integrated manufacturing methods for meso-scale devices across a wide range, from tens of micrometers to tens of centimeters for flexible sensors, smart metal/polymer actuators, self-assembling machines, mechanisms and structures.Meso-scale manufacturing not only requires careful consolidation of existing manufacturing technologies but also investigation of comprehensive design, materials and fabrication methodologies. Presently there is no single fabrication process to manufacture multi-material, multi-layer, multi-DoF robots. We propose using a UV diode pumped solid state micro-laser machining system for a developing, testing and validating systematic meso-scale manufacturing. Origami robot developments within the frame work of two SNSF supported START (Surface for Tangible Reality) and ROBUST (Robotic Back Support System) projects exemplify such efforts. Ultimately, we aim to target fabrication methods for wearable devices with embedded meso-scale sensors, actuators and other components and eventually toward mass-producing individual robots. It is possible to manufacture multi-DoF device components individually with conventional methods; however, assembly of them is often impossible or at best burdensome and impractical. Therefore, new integrated manufacturing methods will alleviate this challenge and provide easy assembly. Such technology is currently missing in various manufacturing based industries, and this specialized outlook on automated component-to-assembly process will be one of the next directions of new generation of the manufacturing technologies.
-